login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 - 2*x + 2*x^2).
21

%I #65 Sep 08 2022 08:45:15

%S 1,2,2,0,-4,-8,-8,0,16,32,32,0,-64,-128,-128,0,256,512,512,0,-1024,

%T -2048,-2048,0,4096,8192,8192,0,-16384,-32768,-32768,0,65536,131072,

%U 131072,0,-262144,-524288,-524288,0,1048576,2097152,2097152,0,-4194304,-8388608,-8388608,0,16777216

%N Expansion of 1/(1 - 2*x + 2*x^2).

%C Yet another variation on A009545.

%C Row sums of Krawtchouk triangle A098593. Partial sums of e.g.f. exp(x)cos(x), or 2^(n/2)cos(Pi*n/2). See A009116.

%C Binomial transform of A057077. - _R. J. Mathar_, Nov 04 2008

%C Partial sums of A146559. - _Philippe Deléham_, Dec 01 2008

%C Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - _R. J. Mathar_, Aug 10 2012

%C Also the inverse Catalan transform of A000079. - _Arkadiusz Wesolowski_, Oct 26 2012

%H Seiichi Manyama, <a href="/A099087/b099087.txt">Table of n, a(n) for n = 0..5000</a>

%H Karl Dilcher and Maciej Ulas, <a href="https://arxiv.org/abs/2008.13475">Divisibility and Arithmetic Properties of a Class of Sparse Polynomials</a>, arXiv:2008.13475 [math.NT], 2020. See Table 1, 1st column, p. 3.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2).

%F E.g.f.: exp(x)*(cos(x) + sin(x)).

%F a(n) = 2^(n/2)*(cos(Pi*n/4) + sin(Pi*n/4)).

%F a(n) = Sum_{k=0..n} Sum_{i=0..k} binomial(n-k, k-i)*binomial(n, i) *(-1)^(k-i).

%F a(n) = 2*(a(n-1) - a(n-2)).

%F From _R. J. Mathar_, Apr 18 2008: (Start)

%F a(n) = (1-i)^(n-1) + (1+i)^(n-1) where i=sqrt(-1).

%F a(n) = 2 Sum_{k=0..(n-1)/2} (-1)^k*binomial(n-1,2k) if n>0. (End)

%F a(n) = Sum_{k=0..n} A109466(n,k)*2^k. - _Philippe Deléham_, Oct 28 2008

%F E.g.f.: (cos(x)+sin(x))*exp(x) = G(0); G(k)=1+2*x/(4*k+1-x*(4*k+1)/(2*(2*k+1)+x-2*(x^2)*(2*k+1)/((x^2)-(2*k+2)*(4*k+3)/G(k+1)))); (continued fraction). - _Sergei N. Gladkovskii_, Nov 26 2011

%F G.f.: U(0) where U(k)= 1 + x*(k+3) - x*(k+1)/U(k+1) ; (continued fraction, 1-step). - _Sergei N. Gladkovskii_, Oct 10 2012

%F a(n) = Re((1+i)^n) + Im((1+i)^n) where i = sqrt(-1) = A146559(n) + A009545(n). - _Philippe Deléham_, Feb 13 2013

%F a(n) = Sum_{j=0..n} binomial(n, j)*(-1)^binomial(j, 2); this is the case m=2 and z=-1 of f(m,n)(z) = Sum_{j=0..n} binomial(n, j)*z^binomial(j, m). See Dilcher and Ulas. - _Michel Marcus_, Sep 01 2020

%t CoefficientList[Series[1/(1 -2x +2x^2), {x, 0, 50}], x] (* _Michael De Vlieger_, Dec 24 2015 *)

%o (Sage) [lucas_number1(n,2,2) for n in range(1, 50)] # _Zerinvary Lajos_, Apr 23 2009

%o (PARI) x='x+O('x^50); Vec(1/(1-2*x+2*x^2)) \\ _Altug Alkan_, Dec 24 2015

%o (Magma) I:=[1,2]; [n le 2 select I[n] else 2*(Self(n-1) - Self(n-2)): n in [1..50]]; // _G. C. Greubel_, Mar 16 2019

%o (GAP) a:=[1,2];; for n in [3..50] do a[n]:=2*a[n-1]-2*a[n-2]; od; a; # _G. C. Greubel_, Mar 16 2019

%Y Cf. A009545, A146559.

%K easy,sign

%O 0,2

%A _Paul Barry_, Sep 24 2004

%E Signs added by _N. J. A. Sloane_, Nov 14 2006