Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jun 11 2019 07:00:14
%S 1,-1,4,-46,1024,-36976,1965664,-144361456,13997185024,-1731678144256,
%T 266182076161024,-49763143319190016,11118629668610842624,
%U -2925890822304510631936,895658946905031792553984
%N Diagonal of Euler-Seidel matrix with start sequence e.g.f. 1-tanh(x).
%C T(2n,n), where T is A008280 (signed).
%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>
%F |a(n)| = A000657(n) - _Sean A. Irvine_, Dec 22 2010
%F G.f.: 1/G(0) where G(k) = 1 + x*(k+1)*(4*k+1)/(1 + x*(k+1)*(4*k+3)/G(k+1) ) ; (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Feb 05 2013
%F G.f.: G(0)/(1+x), where G(k) = 1 - x^2*(k+1)^2*(4*k+1)*(4*k+3)/( x^2*(k+1)^2*(4*k+1)*(4*k+3) - (1 + x*(8*k^2+4*k+1))*(1 + x*(8*k^2+20*k+13))/G(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Feb 01 2014
%t A099023List[n_] := Module[{e, dim, m, k}, dim = 2 n; e[0, 0] = 1; For[m = 1, m <= dim - 1, m++, If[EvenQ[m], e[m, 0] = 1; For[k = m - 1, k >= -1, k--, e[k, m - k] = e[k + 1, m - k - 1] - e[k, m - k - 1]], e[0, m] = 1; For[k = 1, k <= m + 1, k++, e[k, m - k] = e[k - 1, m - k + 1] + e[k - 1, m - k]]]]; Table[e[k, k], {k, 0, (dim + 1)/2 - 1}]];
%t A099023List[15] (* _Jean-François Alcover_, Jun 11 2019, after _Peter Luschny_ *)
%o (Sage) # Variant of an algorithm of L. Seidel (1877).
%o def A099023_list(n) :
%o dim = 2*n; E = matrix(ZZ, dim); E[0,0] = 1
%o for m in (1..dim-1) :
%o if m % 2 == 0 :
%o E[m,0] = 1;
%o for k in range(m-1,-1,-1) :
%o E[k,m-k] = E[k+1,m-k-1] - E[k,m-k-1]
%o else :
%o E[0,m] = 1;
%o for k in range(1,m+1,1) :
%o E[k,m-k] = E[k-1,m-k+1] + E[k-1,m-k]
%o return [E[k,k] for k in range((dim+1)//2)]
%o # _Peter Luschny_, Jul 14 2012
%Y Cf. A000657, A008280, A029582, A009744.
%K sign
%O 0,3
%A _Ralf Stephan_, Sep 23 2004