OFFSET
0,5
COMMENTS
Apparently the rows of this entry are the antidiagonals of the transfer matrix of Table 3 on p. 40 of the Jacobsen and Salas link. - Tom Copeland, Dec 25 2015
LINKS
A. Bernini, M. Bouvel and L. Ferrari, Some statistics on permutations avoiding generalized patterns, PU.M.A. Vol. 18 (2007), No. 3-4, pp. 223-237.
Sen-Peng Eu, Shu-Chung Liu, Yeong-Nan Yeh, Taylor expansions for Catalan and Motzkin numbers, Advances in Applied Mathematics 29, Issue 3 (2002), 345-357.
J. L. Jacobsen, and J. Salas, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV. Chromatic polynomial with cyclic boundary conditions, J. Stat. Phys. 122 (2006) 705-760, arXiv:cond-mat/0407444.
FORMULA
G.f. ( (1 + x)*(1 - x*y) - (1 + x*y)(1 - 2*x - 3*x^2)^(1/2) )/( 2*x*(1 - y + x*y(1 + x*y)) ) = Sum_{n>=0, 1<=k<=n/2}T(n, k)x^n*y^k.
EXAMPLE
Triangle begins
1;
1;
1, 1;
2, 2;
4, 4, 1;
9, 9, 3;
21, 21, 8, 1;
51, 51, 21, 4;
MATHEMATICA
Clear[a] a[0, 0]=1; a[1, 0]=1; a[2, 0]=a[2, 1]=1; a[n_, r_]/; r<0 := 0; a[n_, r_]/; n>=2 && r==0:= Sum[a[n-1, n-1-j], {j, n-1}]; a[n_, r_]/; n>=3 && r >= 1 := a[n, r] = Sum[a[n-2, n-2-j], {j, n-r-1}]+Sum[a[n-1, n-1-j], {j, n-r-1}]; Table[a[n, r], {n, 0, 10}, {r, 0, n/2}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
David Callan, Oct 24 2004
STATUS
approved