Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #91 Jul 07 2024 01:33:07
%S 1,1,2,6,23,102,495,2549,13682,75714,428882,2474573,14492346,85926361,
%T 514763279,3111119358,18946375767,116147683902,716179441293,
%U 4438862153246,27638747494178,172805469880497,1084462349973559,6828717036765622,43132158190994223,273204023401012901
%N Number of permutations of [1..n] which avoid 4231 and 42513.
%C (a(n))_{n>=1} is the INVERT transform of (u(n))_{n>=1}:=(1,1,3,12,55,273,...), the ternary numbers A001764. - _David Callan_, Nov 21 2011
%C a(n) = number of Dyck paths of semilength 2n for which all descents are of even length (counted by A001764) with no valley vertices at height 1. For example, a(2)=2 counts UUUUDDDD, UUDDUUDD. - _David Callan_, Nov 21 2011
%C Conjecture: a(n) is the number of permutations of [1..n] which avoid 1342 and 13254. - _Alexander Burstein_, Oct 19 2017
%H G. C. Greubel, <a href="/A098746/b098746.txt">Table of n, a(n) for n = 0..1000</a>
%H M. H. Albert et al., <a href="http://dx.doi.org/10.1016/j.disc.2004.08.003">Restricted permutations and queue jumping</a>, Discrete Math., 287 (2004), 129-133.
%H Paul Barry, <a href="https://arxiv.org/abs/1912.11845">Chebyshev moments and Riordan involutions</a>, arXiv:1912.11845 [math.CO], 2019.
%H Paul Barry, <a href="https://arxiv.org/abs/2104.01644">Centered polygon numbers, heptagons and nonagons, and the Robbins numbers</a>, arXiv:2104.01644 [math.CO], 2021.
%H Wlodzimierz Bryc, Raouf Fakhfakh, and Wojciech Mlotkowski, <a href="https://arxiv.org/abs/1708.05343">Cauchy-Stieltjes families with polynomial variance functions and generalized orthogonality</a>, arXiv:1708.05343 [math.PR], 2017-2019. Also in <a href="http://www.math.uni.wroc.pl/~pms/publicationsArticleRef.php?nr=39.2&nrA=1&ppB=%20237&ppE=%20258">Probability and Mathematical Statistics</a> (2019), Vol. 39, No. 2, 237-258.
%H Wenqin Cao, Emma Yu Jin, and Zhicong Lin, <a href="https://doi.org/10.1016/j.dam.2019.01.035">Enumeration of inversion sequences avoiding triples of relations</a>, Discrete Applied Mathematics (2019); see also <a href="http://www.emmayujin.at/Pubs/CaoJinLin19.pdf">author's copy</a>.
%H Joanna N. Chen and Zhicong Lin, <a href="https://arxiv.org/abs/2112.04115">Combinatorics of the symmetries of ascents in restricted inversion sequences</a>, arXiv:2112.04115 [math.CO], 2021.
%H Isaac DeJager, Madeleine Naquin, and Frank Seidl, <a href="https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf">Colored Motzkin Paths of Higher Order</a>, VERUM 2019.
%H Toufik Mansour and Mark Shattuck, <a href="https://hal.archives-ouvertes.fr/hal-03295362">Further enumeration results concerning a recent equivalence of restricted inversion sequences</a>, hal-03295362 [math.CO], 2021.
%H Megan A. Martinez and Carla D. Savage, <a href="https://arxiv.org/abs/1609.08106">Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations</a>, arXiv:1609.08106 [math.CO], 2016 [Section 2.26].
%F G.f.: 1 + Sum_{n>=1} (t^n*Sum_{k=0..n} ((n-k)*binomial(2*k+n,k)/(2*k+n))).
%F G.f.: sqrt(3)/(sqrt(3)-2*sqrt(x)*sin(asin(3*sqrt(3x)/2)/3)). - _Paul Barry_, Dec 15 2006
%F From _Gary W. Adamson_, Jul 07 2011: (Start)
%F Let M = the production matrix:
%F 1, 1;
%F 1, 2, 1;
%F 1, 3, 2, 1;
%F 1, 4, 3, 2, 1;
%F 1, 5, 4, 3, 2, 1;
%F ...
%F a(n) is the upper left term in M^n, with sum of top row terms = a(n+1). Example: top row of M^3 = (6, 11, 5, 1), where a(3) = 6 and a(4) = 23 = (6 + 11 + 5 + 1). (End)
%F a(n) ~ 3^(3*n+3/2) / (49 * sqrt(Pi) * 4^n * n^(3/2)). - _Vaclav Kotesovec_, Mar 17 2014
%F Conjecture: 2*(2*n-1)*(n-1)*a(n) +3*(11*n^2-67*n+76)*a(n-1) +3*(-155*n^2+931*n-1356)*a(n-2) +(469*n^2-2799*n+4070)*a(n-3) -48*(3*n-8)*(3*n-10)*a(n-4)=0. - _R. J. Mathar_, May 30 2014
%F G.f: A(x) = 1 + series reversion of x/((1+x)*c(x/(1+x))), where c(x) = (1 - sqrt(1 - 4*x))(2*x) is the g.f. of the Catalan numbers A000108. - _Peter Bala_, May 05 2024
%p 1+add( t^n * add( (n-l)*binomial(2*l+n,l)/(2*l+n), l=0..n ), n=1..30);
%t Flatten[{1,Table[Sum[(n-j)*Binomial[2*j+n,j]/(2*j+n),{j,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Mar 17 2014 *)
%o (PARI) a(n) = {my(k = 1); if(n > 0, k = sum(j = 0, n, (n-j)*binomial(2*j+n, j)/(2*j+n))); k; } \\ _Jinyuan Wang_, Aug 03 2019
%Y Cf. A000108, A001764.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Oct 30 2004