login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098738
a(1) = 1, a(2) = 2, a(3) = 2, a(4) = 3, for n >= 3, a(n+2) = a(n+1) + a(n)*floor(n/2)*ceiling(n/2).
1
1, 2, 2, 3, 7, 19, 61, 232, 964, 4676, 23956, 140856, 859536, 5930352, 42030864, 332618112, 2686346496, 23973905664, 217390853376, 2159277212160, 21724454016000, 237652175232000, 2627342116992000, 31383255320064000
OFFSET
1,2
LINKS
FORMULA
If a(n) = c(n)*(floor((n-1)/2))!*(ceiling((n-1)/2))!, then for n >= 3, c(n) = the continued fraction [1; 1, 1, 1/2, 1/2, 1/3, 1/3, 1/4, 1/4, ..., ceiling((n-2)/2)], where the total number of rational terms in the continued fraction is (n-1); and c(n+1) also equals, for n>= 3, (Sum_{j=0..floor((n-1)/2)} c(n- 2j)) / ceiling(n/2).
MAPLE
a:=array(1..35):a[1]:=1:a[2]:=2:a[3]:=2:a[4]:=3:for n from 3 to 33 do:a[n+2]:=a[n+1]+a[n]*floor(n/2)*ceil(n/2):od:seq(a[i], i=1..35) # Mark Hudson, Oct 21 2004
MATHEMATICA
nxt[{n_, a_, b_}]:={n+1, b, b+a*Floor[(n+1)/2]*Ceiling[(n+1)/2]}; Join[ {1, 2}, Rest[ NestList[nxt, {1, 1, 2}, 30][[All, 2]]]] (* Harvey P. Dale, Aug 04 2020 *)
CROSSREFS
Sequence in context: A113842 A032161 A265801 * A291742 A083701 A076996
KEYWORD
nonn
AUTHOR
Leroy Quet, Sep 30 2004
EXTENSIONS
More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 21 2004
STATUS
approved