OFFSET
1,2
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..507
FORMULA
If a(n) = c(n)*(floor((n-1)/2))!*(ceiling((n-1)/2))!, then for n >= 3, c(n) = the continued fraction [1; 1, 1, 1/2, 1/2, 1/3, 1/3, 1/4, 1/4, ..., ceiling((n-2)/2)], where the total number of rational terms in the continued fraction is (n-1); and c(n+1) also equals, for n>= 3, (Sum_{j=0..floor((n-1)/2)} c(n- 2j)) / ceiling(n/2).
MAPLE
a:=array(1..35):a[1]:=1:a[2]:=2:a[3]:=2:a[4]:=3:for n from 3 to 33 do:a[n+2]:=a[n+1]+a[n]*floor(n/2)*ceil(n/2):od:seq(a[i], i=1..35) # Mark Hudson, Oct 21 2004
MATHEMATICA
nxt[{n_, a_, b_}]:={n+1, b, b+a*Floor[(n+1)/2]*Ceiling[(n+1)/2]}; Join[ {1, 2}, Rest[ NestList[nxt, {1, 1, 2}, 30][[All, 2]]]] (* Harvey P. Dale, Aug 04 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Sep 30 2004
EXTENSIONS
More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 21 2004
STATUS
approved