login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = C(n, 5)^(n-6).
10

%I #10 Oct 26 2019 14:30:10

%S 1,1,21,3136,2000376,4032758016,21047953604832,246803372284575744,

%T 5848571832825267643383,258055182353934343170048256,

%U 19860857243854539712080765166683,2528286565488663166137820705009434624

%N a(n) = C(n, 5)^(n-6).

%C There is a flaw in the paper by Lamathe that we point out in our contribution. This sequence does not give the number of labeled 5-arch graphs on n nodes. The correct sequence is given in our paper. - Saverio Caminiti and Emanuele G. Fusco (fusco(AT)di.uniroma1.it), Sep 18 2007

%H Saverio Caminiti and Emanuele G. Fusco, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Caminiti/caminiti.html">On the Number of Labeled k-arch Graphs</a>, Journal of Integer Sequences, Vol 10 (2007), Article 07.7.5.

%H C. Lamathe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Lamathe/lamathe2.html">The number of labeled k-arch graphs</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.1.

%H B. Leclerc, <a href="https://doi.org/10.4000/msh.2858">Graphes d'arches</a>, Math. Sci. Hum. 157 (2002), 27-48.

%p with(combinat); seq( binomial(n,5)^(n-6), n=5..19 );

%Y Cf. A098721, A098722, A098723

%K easy,nonn

%O 5,3

%A Cedric Lamathe (lamathe(AT)loria.fr), Sep 30 2004