login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = C(n, 4)^(n-5).
4

%I #13 Sep 08 2022 08:45:15

%S 1,1,15,1225,343000,252047376,408410100000,1291467969000000,

%T 7281760530523359375,68304345527688750390625,

%U 1009036084126126084036009001,22455695662847780324059072265625,725747031014354499889356800000000000,33031134065402989058412384256000000000000

%N a(n) = C(n, 4)^(n-5).

%C Comment from Saverio Caminiti and Emanuele G. Fusco (fusco(AT)di.uniroma1.it), Sep 18 2007: There is a flaw in the paper by Lamathe that we point out in our contribution. This sequence does not give the number of labeled 4-arch graphs on n nodes. The correct sequence is given in our paper.

%H Vincenzo Librandi, <a href="/A098723/b098723.txt">Table of n, a(n) for n = 4..140</a>

%H Saverio Caminiti and Emanuele G. Fusco, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Caminiti/caminiti.html">On the Number of Labeled k-arch Graphs</a>, Journal of Integer Sequences, Vol 10 (2007), Article 07.7.5

%H C. Lamathe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Lamathe/lamathe2.html">The number of labeled k-arch graphs</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.1.

%H B. Leclerc, <a href="https://doi.org/10.4000/msh.2858">Graphes d'arches</a>, Math. Sci. Hum. 157 (2002), 27-48.

%p with(combinat); seq( binomial(n,4)^(n-5), n=4..19 );

%t Table[Binomial[n,4]^(n-5),{n,4,20}] (* _Harvey P. Dale_, Aug 14 2014 *)

%o (Magma) [Binomial(n, 4)^(n-5): n in [4..20]]; // _Vincenzo Librandi_, Aug 15 2014

%Y Cf. A098721, A098722, A098724.

%K easy,nonn

%O 4,3

%A Cedric Lamathe (lamathe(AT)loria.fr), Sep 30 2004

%E More terms from _Harvey P. Dale_, Aug 14 2014