login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that x' = n has no integer solution, where x' is the arithmetic derivative of x.
14

%I #42 Jan 24 2024 13:54:52

%S 2,3,11,17,23,29,35,37,47,53,57,65,67,79,83,89,93,97,107,117,125,127,

%T 137,145,149,157,163,173,177,179,189,197,205,207,209,217,219,223,233,

%U 237,245,257,261,277,289,303,305,307,317,323,325,337,345,353,367,373

%N Numbers n such that x' = n has no integer solution, where x' is the arithmetic derivative of x.

%C If x' = n has solutions, they occur for x <= (n/2)^2. - _T. D. Noe_, Oct 12 2004

%C The prime and composite terms are in A189483 and A189554, respectively.

%C A099302(a(n)) = 0. - _Reinhard Zumkeller_, Mar 18 2014

%H T. D. Noe, <a href="/A098700/b098700.txt">Table of n, a(n) for n = 1..5000</a>

%H Victor Ufnarovski and Bo Ahlander, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.html">How to Differentiate a Number</a>, J. Integer Seqs., Vol. 6, 2003. (See p. 7.)

%t a[1] = 0; a[n_] := Block[{f = Transpose[ FactorInteger[ n]]}, If[ PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; b = Table[ -1, {500}]; b[[1]] = 1; Do[c = a[n]; If[c < 500 && b[[c + 1]] == 0, b[[c + 1]] = n], {n, 10^6}]; Select[ Range[500], b[[ # ]] == 0 &]

%t dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; Select[Range[400], 0==Count[d1, # ]&]

%o (Haskell)

%o a098700 n = a098700_list !! (n-1)

%o a098700_list = filter

%o (\z -> all (/= z) $ map a003415 [1 .. a002620 z]) [2..]

%o -- _Reinhard Zumkeller_, Mar 18 2014

%o (PARI) list(lim)=my(v=List()); lim\=1; forfactored(n=1, lim^2, my(f=n[2],t); listput(v, n[1]*sum(i=1, #f~, f[i, 2]/f[i, 1]))); setminus([1..lim], Set(v)); \\ _Charles R Greathouse IV_, Oct 21 2021

%o (Python)

%o from itertools import count, islice

%o from sympy import factorint

%o def A098700_gen(startvalue=2): # generator of terms >= startvalue

%o return filter(lambda n:all(map(lambda m:sum((m*e//p for p,e in factorint(m).items())) != n,range(1,(n**2>>1)+1))),count(max(startvalue,2)))

%o A098700_list = list(islice(A098700_gen(),30)) # _Chai Wah Wu_, Sep 12 2022

%Y Cf. A003415 (arithmetic derivative of n), A099302 (number of solutions to x' = n), A099303 (greatest x such that x' = n), A098699 (least x such that x' = n).

%Y Cf. A239433 (complement), A002620.

%Y Subsequence of A369464.

%K nonn

%O 1,1

%A _Robert G. Wilson v_, Sep 21 2004

%E Corrected and extended by _T. D. Noe_, Oct 12 2004