login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Integral_{x=0..infinity} x/(x^x) dx.
1

%I #8 Mar 09 2014 13:47:02

%S 1,7,5,1,8,2,8,8,8,4,3,1,3,8,4,1,7,8,0,4,1,3,3,2,7,6,3,7,6,4,1,6,7,6,

%T 3,4,8,1,2,2,4,1,2,1,6,1,2,9,4,5,2,6,3,6,0,7,4,1,0,7,0,4,5,1,4,9,9,8,

%U 3,8,3,9,6,5,9,2,3,7,5,5,1,0,3,3,6,9,1,5,1,0,3,9,4,8,6,8,4,3,1,5,6,6,3,4,1

%N Decimal expansion of Integral_{x=0..infinity} x/(x^x) dx.

%C Decimal expansion of G(b)-G(a), where b->infinity, a->0+ and G(x) is the antiderivative of x/(x^x).

%e 1.75182888431384178041332763764167634812241216129452636074107045149...

%p int(x/(x^x),x=0..infinity);

%t $MaxPrecision = 10^7; RealDigits[ NIntegrate[x/x^x, {x, 0, Infinity}, WorkingPrecision -> 256, PrecisionGoal -> 128, MaxRecursion -> 16], 10, 111][[1]] (* _Robert G. Wilson v_, Nov 02 2004 *)

%t RealDigits[N[Integrate[x/x^x,{x,0,\[Infinity]}],120]][[1]] (* _Harvey P. Dale_, Dec 20 2012 *)

%K cons,nonn

%O 1,2

%A Joseph Biberstine (jrbibers(AT)indiana.edu), Oct 27 2004

%E More terms from _Robert G. Wilson v_, Nov 03 2004