login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled loops and arcs.
13

%I #20 Jan 12 2021 21:29:58

%S 1,2,17,250,5465,162677,6241059,297132409,17075153860,1159545515804,

%T 91501467848088,8276847825732141,848577193578286942,

%U 97672164219292005480,12518933902769241287267,1774279753092963892540493,276351502436571180980604240,47046745370508674770872396843

%N Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled loops and arcs.

%D G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

%H Andrew Howroyd, <a href="/A098622/b098622.txt">Table of n, a(n) for n = 0..200</a>

%H G. Labelle, <a href="https://doi.org/10.1016/S0012-365X(99)00265-4">Counting enriched multigraphs according to the number of their edges (or arcs)</a>, Discrete Math., 217 (2000), 237-248.

%H G. Paquin, <a href="/A038205/a038205.pdf">Dénombrement de multigraphes enrichis</a>, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]

%F E.g.f.: exp(-1)*Sum_{n >=0} exp(n^2*(exp(x)-1))/n!. - _Vladeta Jovovic_, Aug 24 2006

%F a(n) = Sum_{k=0..n} Stirling2(n,k)*Bell(2*k). - _Vladeta Jovovic_, Aug 24 2006

%F E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014507 and 1 + R(x) is the e.g.f. of A000110. - _Andrew Howroyd_, Jan 12 2021

%o (PARI) \\ here R(n) is A000110 as e.g.f.

%o egfA014507(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, stirling(i,k,1)*polcoef(bell, 2*k))*x^i/i!) + O(x*x^n)}

%o EnrichedGdlSeq(R)={my(n=serprec(R, x)-1); Vec(serlaplace(subst(egfA014507(n), x, R-polcoef(R,0))))}

%o R(n)={exp(exp(x + O(x*x^n))-1)}

%o EnrichedGdlSeq(R(20)) \\ _Andrew Howroyd_, Jan 12 2021

%Y Cf. A000110, A014507, A098620, A098621, A098623.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Oct 26 2004

%E More terms from _Vladeta Jovovic_, Aug 24 2006

%E Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 15 2007

%E Terms a(16) and beyond from _Andrew Howroyd_, Jan 12 2021