login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of Pell and Catalan numbers: a(n) = A000129(n+1)*A000108(n).
12

%I #34 May 05 2023 01:37:26

%S 1,2,10,60,406,2940,22308,175032,1408550,11561836,96425836,814773960,

%T 6960289532,60012947800,521582661000,4564643261040,40190674554630,

%U 355772529165900,3164408450118300,28266363849505320,253466716153665300,2280803103062033160,20588945107316958840

%N Product of Pell and Catalan numbers: a(n) = A000129(n+1)*A000108(n).

%C Radius of convergence: r = (sqrt(2)-1)/4, where A(r) = sqrt(2+sqrt(2)).

%C More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.

%H Harvey P. Dale, <a href="/A098616/b098616.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: A(x) = sqrt( (1-4*x - sqrt(1-8*x-16*x^2))/16 )/x.

%F Run lengths of zeros (mod 10) equal (5^k - (-1)^k)/2 - 1 starting at index (5^k + (-1)^k)/2:

%F a(n) == 0 (mod 10) for n = (5^k + (-1)^k)/2 through n = 5^k - 1 when k>=1.

%F a(n) ~ 2^(2*n-3/2) * (1+sqrt(2))^(n+1) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, May 09 2014

%F A(-x) = 1/x * series reversion( x*(2*x + sqrt(1 - 4*x^2)) ). Compare with the o.g.f. B(x) of the central binomial numbers A000984, which satisfies B(-x) = 1/x * series reversion( x*(2*x + sqrt(1 + 4*x^2)) ). See also A214377. - _Peter Bala_, Oct 19 2015

%F n*(n+1)*a(n) -4*n*(2*n-1)*a(n-1) -4*(2*n-1)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Nov 17 2018

%F Sum_{n>=0} a(n)/16^n = 2*sqrt(3-sqrt(7)). - _Amiram Eldar_, May 05 2023

%e Sequence begins: [1*1, 2*1, 5*2, 12*5, 29*14, 70*42, 169*132, 408*429,...].

%t With[{nn=30},Times@@@Thread[{LinearRecurrence[{2,1},{1,2},nn], CatalanNumber[ Range[0,nn-1]]}]] (* _Harvey P. Dale_, Jan 04 2012 *)

%t a[n_] := Fibonacci[n + 1, 2] * CatalanNumber[n]; Array[a, 25, 0] (* _Amiram Eldar_, May 05 2023 *)

%o (PARI) a(n)=binomial(2*n,n)/(n+1)*round(((1+sqrt(2))^(n+1)-(1-sqrt(2))^(n+1))/(2*sqrt(2)))

%Y Cf. A000129, A000108, A098614, A098617, A098618, A000984, A214377.

%K nonn,easy

%O 0,2

%A _Paul D. Hanna_, Oct 09 2004