Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 05 2024 20:37:08
%S 1,100,10000,1000000,100000000,10000000000,1000000000000,
%T 100000000000000,10000000000000000,1000000000000000000,
%U 100000000000000000000,10000000000000000000000,1000000000000000000000000,100000000000000000000000000,10000000000000000000000000000,1000000000000000000000000000000
%N a(n) = 100^n.
%C For any base B, these are the numbers (B^2)^n written in base B. - _Philippe Deléham_, Jan 06 2008
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H Robert Price, <a href="/A098608/a098608.txt">Comments on A098608 concerning Elementary Cellular Automata, Feb 20 2016</a>.
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (100).
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F a(n) = 100*a(n-1) = A011557(2n) = A098609(n) + 1.
%F G.f.: 1/(1-100x).
%F E.g.f.: exp(100*x). - _Stefano Spezia_, Aug 05 2024
%t LinearRecurrence[{100},{1},12] (* _Ray Chandler_, Aug 17 2015 *)
%t NestList[100#&,1,20] (* _Harvey P. Dale_, Dec 28 2018 *)
%Y Cf. A011557, A098609.
%K easy,nonn
%O 0,2
%A _Henry Bottomley_, Sep 17 2004
%E a(12)-a(15) from _Stefano Spezia_, Aug 05 2024