login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098582
Expansion of (1+2*x+4*x^2+8*x^3)/(1-x-16*x^5).
2
1, 3, 7, 15, 15, 31, 79, 191, 431, 671, 1167, 2431, 5487, 12383, 23119, 41791, 80687, 168479, 366607, 736511, 1405167, 2696159, 5391823, 11257535, 23041711, 45524383, 88662927, 174932095, 355052655, 723720031, 1452110159, 2870716991
OFFSET
0,2
FORMULA
a(n) = a(n-1) + 16*a(n-5).
a(n) = Sum_{k=0..n} binomial(n-k, floor(k/4)) * 2^k.
MATHEMATICA
CoefficientList[Series[(1+2*x+4*x^2+8*x^3)/(1-x-16*x^5), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 16}, {1, 3, 7, 15, 15}, 50] (* G. C. Greubel, Feb 03 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1+2*x+4*x^2+8*x^3)/(1-x-16*x^5)) \\ G. C. Greubel, Feb 03 2018
(Magma) I:=[1, 3, 7, 15, 15]; [n le 5 select I[n] else Self(n-1) +16*Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 03 2018
CROSSREFS
Sequence in context: A117589 A295930 A143703 * A235698 A089432 A111294
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 16 2004
STATUS
approved