login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 16*n - 4.
7

%I #34 Sep 01 2024 09:37:06

%S 12,28,44,60,76,92,108,124,140,156,172,188,204,220,236,252,268,284,

%T 300,316,332,348,364,380,396,412,428,444,460,476,492,508,524,540,556,

%U 572,588,604,620,636,652,668,684,700,716,732,748,764,780,796,812,828,844

%N a(n) = 16*n - 4.

%C For n > 3, the number of squares on the infinite 4-column chessboard at <= n knight moves from any fixed start point.

%H Vincenzo Librandi, <a href="/A098502/b098502.txt">Table of n, a(n) for n = 1..5000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%H <a href="/index/Se#sequences_which_agree_for_a_long_time">Index entries for sequences which agree for a long time but are different</a>.

%F G.f.: 4*x*(3+x)/(1-x)^2. - _Colin Barker_, Jan 09 2012

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3 - 2*sqrt(2)))/(16*sqrt(2)). - _Amiram Eldar_, Sep 01 2024

%t Range[12, 1000, 16] (* _Vladimir Joseph Stephan Orlovsky_, May 31 2011 *)

%o (Magma) [16*n - 4: n in [1..60]]; // _Vincenzo Librandi_, Jul 24 2011

%o (PARI) a(n)=16*n-4 \\ _Charles R Greathouse IV_, Jul 10 2016

%Y Cf. A008590, A017629, A098498, A158953.

%K nonn,easy

%O 1,1

%A _Ralf Stephan_, Sep 15 2004