Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jul 21 2021 10:01:59
%S 1,0,-1,-1,-1,1,-1,1,2,-1,0,3,0,-3,1,1,2,-5,-2,4,-1,1,-2,-7,6,5,-5,1,
%T 0,-5,0,15,-5,-9,6,-1,-1,-3,12,9,-25,1,14,-7,1,-1,3,15,-18,-29,35,7,
%U -20,8,-1,0,7,0,-42,14,63,-42,-20,27,-9,1,1,4,-22,-24,85,14,-112,42
%N Triangle T(n,k) read by rows: difference between A098489 and A098490 at triangular rows.
%C Also, coefficients of polynomials that have values in A098495 and A094954.
%H Alex Fink, Richard K. Guy, and Mark Krusemeyer, <a href="https://doi.org/10.11575/cdm.v3i2.61940">Partitions with parts occurring at most thrice</a>, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114.
%F T(n, k) = A098489[n(n+1)/2, k] - A098490[n(n+1)/2, k].
%F Recurrence: T(n, k) = T(n-1, k)-T(n-1, k-1)-T(n-2, k); T(n, k)=0 for n<0, k>n, k<0; T(n, n)=(-1)^n; T(n, n-1)=(-1)^n*(1-n).
%F G.f.: (1-x)/(1+(y-1)*x+x^2). [_Vladeta Jovovic_, Dec 14 2009]
%F From _Peter Bala_, Jul 13 2021: (Start)
%F Riordan array ( (1 - x)/(1 - x + x^2), -x/(1 - x + x^2) ).
%F T(n,k) = (-1)^k * the (n,k)-th entry of Q^(-1)*P = Sum_{j = k..n} (-1)^(k+binomial(n-j+1,2))*binomial(floor((1/2)*n+(1/2)*j),j)* binomial(j,k), where P denotes Pascal's triangle A007318 and Q denotes triangle A061554 (formed from P by sorting the rows into descending order). (End)
%e Triangle begins:
%e 1;
%e 0, -1;
%e -1, -1, 1;
%e -1, 1, 2, -1;
%e 0, 3, 0, -3, 1;
%e ...
%p A098493 := proc (n, k)
%p add((-1)^(k+binomial(n-j+1,2))*binomial(floor((1/2)*n+(1/2)*j),j)* binomial(j,k), j = k..n);
%p end proc:
%p seq(seq(A098493(n, k), k = 0..n), n = 0..10); # _Peter Bala_, Jul 13 2021
%o (PARI) T(n,k)=if(k>n||k<0||n<0,0,if(k>=n-1,(-1)^n*if(k==n,1,-k),if(n==1,0,if(k==0,T(n-1,0)-T(n-2,0),T(n-1,k)-T(n-2,k)-T(n-1,k-1)))))
%Y Columns include A010892, -A076118. Diagonals include A033999, A038608, (-1)^n*A000096. Row sums are in A057077.
%Y Cf. A098494 (diagonal polynomials).
%K sign,tabl
%O 0,9
%A _Ralf Stephan_, Sep 12 2004