Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 24 2021 01:27:00
%S 0,6,0,5,7,4,2,2,9,4,8,6,3,0,5,7,3,2,1,6,0,9,7,4,4,0,1,1,6,6,3,1,3,8,
%T 4,0,3,5,4,9,7,2,2,8,4,0,8,8,2,9,8,9,2,8,1,1,5,1,2,2,4,4,8,5,6,0,9,3,
%U 4,9,8,5,5,9,0,1,8,6,4,9,1,3,1,2,3,9,2,9,8,1,5
%N Decimal expansion of constant A*B in the asymptotic expression of the summatory function Sum_{n=1..N} (1/phi(n)) as A(log(N)+B) + O(log(N)/N).
%C B equals EulerGamma - A085609.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.7 Euler totient constants, p. 116.
%H Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 52 (Z1*(gamma-Z2)).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotientSummatoryFunction.html">Totient Summatory Function</a>
%F Sum_{n=1..N} 1/phi(n) = A*(log(N)+B) + O(log(N)/N). - _Jean-François Alcover_, Apr 28 2018
%e B = -0.0605742294.../A, where A is A082695.
%t (* Using S. Finch's notation *)
%t digits = 102;
%t A = Zeta[2]*Zeta[3]/Zeta[6];
%t S = Sum[Switch[Mod[k, 6], 0, 1, 1, 0, 2, -1, 3, -1, 4, 0, 5, 1]*PrimeZetaP'[k], {k, 2, 400}] // N[#, digits+40]&;
%t B = EulerGamma - S;
%t AB = A*B;
%t Join[{0}, RealDigits[AB, 10, digits][[1]]] (* _Jean-François Alcover_, Apr 28 2018 *)
%Y Cf. A082695, A085609.
%K nonn,cons,hard
%O 0,2
%A _Eric W. Weisstein_, Sep 09 2004
%E More digits with the aid of A085609 and A082695 from _R. J. Mathar_, Jul 28 2010
%E More digits with the aid of A085609 and A082695 from _Vaclav Kotesovec_, Feb 17 2015