login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/sqrt(1-8*x-4*x^2).
4

%I #49 Mar 21 2024 07:08:09

%S 1,4,26,184,1366,10424,80996,637424,5064166,40528984,326251276,

%T 2638751504,21426682876,174563719984,1426219233416,11681133293024,

%U 95877105146246,788433553532824,6494463369141116,53576199709855184

%N Expansion of 1/sqrt(1-8*x-4*x^2).

%C Binomial transform of A098444. Second binomial transform of A084770. Third binomial transform of A098264.

%H Vincenzo Librandi, <a href="/A098443/b098443.txt">Table of n, a(n) for n = 0..200</a>

%H Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Szalay/szalay42.html">Diagonal Sums in the Pascal Pyramid, II: Applications</a>, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.

%H Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.

%F E.g.f.: exp(4x)*BesselI(0, 2*sqrt(5)*x).

%F a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*2^(n-2k).

%F D-finite with recurrence: n*a(n) = 4*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 15 2012

%F a(n) ~ sqrt(50+20*sqrt(5))*(4+2*sqrt(5))^n/(10*sqrt(Pi*n)). Equivalently, a(n) ~ 2^(n-1/2) * phi^(3*n + 3/2) / (5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Oct 15 2012, updated Mar 21 2024

%F G.f.: 1/(1 - 2*x*(2+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(2+x)/(k+1 - x*(2+x)*(2*k+2)*(4*k+3)/(2*x*(2+x)*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 15 2013

%F G.f.: Q(0), where Q(k) = 1 + 2*x*(x+2)*(4*k+1)/( 2*k+1 - x*(x+2)*(2*k+1)*(4*k+3)/(x*(x+2)*(4*k+3) + (k+1)/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Sep 16 2013

%F From _Peter Bala_, March 16 2024: (Start)

%F a(n) = (-2*i)^n * P(n, 2*i), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial.

%F Sum_{n >= 1} (-1)^(n+1)*4^n/(n*a(n-1)*a(n)) = 2*arctan(1/2) = 2*A073000. (End)

%e G.f. = 1 + 4*x + 26*x^2 + 184*x^3 + 1366*x^4 + 10424*x^5 + 80996*x^6 + ...

%t CoefficientList[Series[1/Sqrt[1 - 8*x - 4*x^2], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 15 2012, updated Mar 21 2024 *)

%o (PARI) x='x+O('x^66); Vec(1/sqrt(1-8*x-4*x^2)) \\ _Joerg Arndt_, May 11 2013

%K easy,nonn

%O 0,2

%A _Paul Barry_, Sep 07 2004