login
Row sums in triangle of 3rd central factorial numbers (A098436).
2

%I #12 Jan 10 2018 21:11:38

%S 1,2,11,111,1732,41153,1361023,59661972,3400514643,244686040585,

%T 21672428066346,2327934086035165,299095824104595685,

%U 45325168774732866658,8011977427652269129031

%N Row sums in triangle of 3rd central factorial numbers (A098436).

%H John Riordan, <a href="/A002720/a002720_2.pdf">Letter, Apr 28 1976.</a>

%F O.g.f.: Sum_{n>=0} x^n / Product_{k=1..n+1} (1-k^3*x). [From Paul D. Hanna, Feb 15 2012]

%F G.f.: (1 - G(0) )/(1-x) where G(k) =1 - 1/(1 - x*k^3)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 17 2013

%o (PARI) {a(n)=polcoeff(sum(m=0, n, x^m/prod(k=1,m+1,1-k^3*x +x*O(x^n))), n)} /* Paul D. Hanna, Feb 15 2012 */

%K nonn

%O 0,2

%A _Ralf Stephan_, Sep 08 2004