Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:45:15
%S 11,17,23,47,107,113,197,233,317,353,467,647,827,863,887,1097,1283,
%T 1307,1433,1487,1493,1613,1877,2003,2087,2243,2273,2663,2693,3257,
%U 3467,3533,3677,3923,4007,4133,4523,4643,4793,4937,4973,5237,5483,5507,5657,6203
%N Greatest members p of prime triples (p-6, p-4, p).
%C Subsequence of A046117; a(n) = A073648(n) + 4 = A022004(n) + 6.
%H Harvey P. Dale, <a href="/A098412/b098412.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeTriplet.html">Prime Triplet</a>
%p K:=10^7: # to get all terms <= K.
%p for n from 1 by 2 to K do; if isprime(n-6) and isprime(n-4) and isprime(n) then print(n) else fi; od; # _Muniru A Asiru_, Aug 06 2017
%t Select[Table[Prime[n], {n, 1000}], PrimeQ[# - 4] && PrimeQ[# - 6] &] (* _Vladimir Joseph Stephan Orlovsky_, Jun 19 2011 *)
%t Select[Partition[Prime[Range[1000]],3,1],Differences[#]=={2,4}&][[All,3]] (* _Harvey P. Dale_, Sep 23 2017 *)
%o (Magma)[p: p in PrimesUpTo(6500)|IsPrime(p) and IsPrime(p-6) and IsPrime(p-4)]; // _Vincenzo Librandi_, Dec 26 2010
%Y Cf. A098413, A098415.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Sep 07 2004