Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Sep 08 2022 08:45:15
%S 0,1,12,121,1200,11881,117612,1164241,11524800,114083761,1129312812,
%T 11179044361,110661130800,1095432263641,10843661505612,
%U 107341182792481,1062568166419200,10518340481399521,104120836647576012
%N Member r=12 of the family of Chebyshev sequences S_r(n) defined in A092184.
%H G. C. Greubel, <a href="/A098297/b098297.txt">Table of n, a(n) for n = 0..1000</a>
%H S. Barbero, U. Cerruti, and N. Murru, <a href="http://www.seminariomatematico.polito.it/rendiconti/78-1/BarberoCerrutiMurru.pdf">On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy</a>, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-11,1).
%F a(n) = (T(n, 5)-1)/4 with Chebyshev's polynomials of the first kind evaluated at x=5: T(n, 5) = A001079(n) = ((5 + 2*sqrt(6))^n + (5 - 2*sqrt(6))^n)/2.
%F a(n) = 10*a(n-1) - a(n-2) + 2, n >= 2, a(0)=0, a(1)=1.
%F a(n) = 11*a(n-1) - 11*a(n-2) + a(n-3), n >= 3, a(0)=0, a(1)=1, a(2)=12.
%F G.f.: x*(1+x)/((1-x)*(1-10*x+x^2)) = x*(1+x)/(1-11*x+11*x^2-x^3) (from the Stephan link, see A092184).
%F a(n) = A132596(n) / 2. - _Peter Bala_, Dec 31 2012
%t LinearRecurrence[{11,-11,1}, {0,1,12}, 30] (* _G. C. Greubel_, May 24 2019 *)
%o (PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1+x)/((1-x)*(1-10*x+x^2)))) \\ _G. C. Greubel_, May 24 2019
%o (Magma) I:=[0,1,12]; [n le 3 select I[n] else 11*Self(n-1)-11*Self(n-2) + Self(n-3): n in [1..30]]; // _G. C. Greubel_, May 24 2019
%o (Sage) (x*(1+x)/((1-x)*(1-10*x+x^2))).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, May 24 2019
%o (GAP) a:=[0,1,12];; for n in [4..30] do a[n]:=11*a[n-1]-11*a[n-2]+ a[n-3]; od; a; # _G. C. Greubel_, May 24 2019
%Y Cf. A097784, A098296.
%K nonn,easy
%O 0,3
%A _Wolfdieter Lang_, Oct 18 2004