login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098233
Consider the family of ordinary multigraphs. Sequence gives the triangle read by rows giving coefficients of polynomials arising from enumeration of those multigraphs on n edges.
3
1, 1, 1, 1, 1, 1, 4, 7, 3, 1, 1, 13, 46, 47, 25, 6, 1, 1, 40, 295, 587, 516, 235, 65, 10, 1, 1, 121, 1846, 6715, 9690, 7053, 3006, 800, 140, 15, 1, 1, 364, 11347, 73003, 170051, 189458, 119211, 46795, 12201, 2170, 266, 21, 1, 1, 1093, 68986, 768747
OFFSET
0,7
COMMENTS
Also gives number T(n, k) of partitions of the multiset {1, 1, 2, 2, ..., n, n} into k nonempty subsets, for 2 <= k <= 2n. - Marko Riedel, Jan 22 2023
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
Steve Butler, Fan Chung, Jay Cummings, and R. L. Graham, Juggling card sequences, arXiv:1504.01426 [math.CO], 2015.
L. Comtet, Birecouvrements et birevêtements d’un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
EXAMPLE
1,
x^2,
x^2+x^3+x^4,
x^2+4x^3+7x^4+3x^5+x^6,
x^2+13x^3+46x^4+47x^5+25x^6+6x^7+x^8,
x^2+40x^3+295x^4+587x^5+516x^6+235x^7+65x^8+10x^9+x^10,
...
Triangle starts:
1;
. . 1;
. . 1, 1, 1;
. . 1, 4, 7, 3, 1;
. . 1, 13, 46, 47, 25, 6, 1;
. . 1, 40, 295, 587, 516, 235, 65, 10, 1;
...
CROSSREFS
Cf. A360037, A360038, A360039, A020554 (row sums).
Sequence in context: A362253 A076414 A198574 * A200602 A118823 A118826
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Oct 26 2004
STATUS
approved