login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Terms in a specific cycle of length 29 of the map x->A098189(x).
4

%I #9 Mar 01 2017 11:45:45

%S 2206,2210,2932,2950,3394,3398,3400,3402,3520,3768,3844,4240,4440,

%T 4516,4778,4782,4828,4870,4884,6428,6484,6840,7056,7624,7680,7984,

%U 8560,9072,10264

%N Terms in a specific cycle of length 29 of the map x->A098189(x).

%C Iteration of the map x -> A098189(x) enters cycles of various lengths.

%C The 29 terms in the first cycle where A098190(x)=29 are listed here in ascending order; the example section of A098190 shows them in the mapping order.

%C See other attractors in A098191-A098195.

%e The cycle follows the mapping 3768 -> 4440 -> ... -> 2210-> 3768 (returning to the first element).

%e This cycle is entered, for example, if the mapping is started at x=246 (Cf. A098190).

%t Function[s, Union@ Drop[s, #] &@ Count[DeleteDuplicates@ Map[Position[s, #] &, s], k_ /; Length@ k == 1]]@ NestList[Function[n, DivisorSum[n, # &, CoprimeQ[#, n/#] &] - EulerPhi@n], 246, 10^3] (* _Michael De Vlieger_, Mar 01 2017 *)

%o (PARI) A098189(n)=my(f=factor(n)); prod(k=1,#f~, f[k,1]^f[k,2]+1) - eulerphi(f)

%o a(n)=if(n>1, A098189(n-1), 2206) \\ _Charles R Greathouse IV_, Mar 01 2017

%Y Cf. A063919, A098189, A098190, A098191, A098193, A098194, A098195.

%K nonn,fini,full

%O 1,1

%A _Labos Elemer_, Sep 03 2004

%E Edited by _R. J. Mathar_, May 15 2009