login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of unitary divisors minus Euler phi: a(n) = A034448(n) - A000010(n).
7

%I #18 Aug 22 2023 08:00:32

%S 0,2,2,3,2,10,2,5,4,14,2,16,2,18,16,9,2,24,2,22,20,26,2,28,6,30,10,28,

%T 2,64,2,17,28,38,24,38,2,42,32,38,2,84,2,40,36,50,2,52,8,58,40,46,2,

%U 66,32,48,44,62,2,104,2,66,44,33,36,124,2,58,52,120,2,66,2,78,64,64,36,144,2

%N Sum of unitary divisors minus Euler phi: a(n) = A034448(n) - A000010(n).

%H Michael De Vlieger, <a href="/A098189/b098189.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) > A063919(n) if n > 1.

%F a(A000040(k)) = 2.

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/(12*zeta(3)) - 3/Pi^2 = 0.380252... . - _Amiram Eldar_, Aug 21 2023

%e a(1) = 1 - 1 = 0.

%t Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &] - EulerPhi@ n, {n, 120}] (* _Michael De Vlieger_, Mar 01 2017 *)

%o (PARI) a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - eulerphi(n); \\ _Michel Marcus_, Feb 25 2014

%o (PARI) a(n)=my(f=factor(n)); prod(k=1, #f[, 2], f[k, 1]^f[k, 2]+1) - eulerphi(f) \\ _Charles R Greathouse IV_, Mar 01 2017

%Y Cf. A034448, A000010, A063919, A098190, A098191, A098192, A098193, A098194, A098195.

%K nonn

%O 1,2

%A _Labos Elemer_, Sep 03 2004

%E Edited by _R. J. Mathar_, Mar 02 2009