Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 12 2017 04:43:19
%S 2,5,7,11,13,19,29,31,29,31,41,41,43,83,59,83,163,97,193,89,89,173,
%T 113,107,131,157,131,109,113,467,151,239,167,263,233,211,251,167,599,
%U 199,199,211,313,241,509,887,307,227,419,479,317,269,653,281,307,277,499
%N Smallest prime p such that prime(n)#/2 + 2*p is prime where p > 3, except p=2 for n=1.
%H Vincenzo Librandi, <a href="/A098170/b098170.txt">Table of n, a(n) for n = 1..200</a>
%e For n=4, A002110(4)/2=210/2=105. 105+2*5 is not prime. 105+2*7 is not prime. 105+2*11 is prime, so a(4)=11.
%p A098170 := proc(n)
%p local pri,j,jmin;
%p pri := A002110(n)/2 ;
%p if n = 1 then
%p jmin := 1;
%p else
%p jmin := 3;
%p end if;
%p for j from jmin do
%p if isprime(pri+2*ithprime(j)) then
%p return ithprime(j) ;
%p end if;
%p end do:
%p end proc: # _R. J. Mathar_, Apr 12 2017
%t Primorial[n_Integer] := Block[{k = Product[ Prime[ j], {j, n}]}, k]; f[n_] := Block[{p = Primorial[n]/2}, If[n == 1, j = 1, j = 2]; While[ !PrimeQ[p + 2Prime[j]], j++ ]; Prime[j]]; Table[ f[n], {n, 57}] (* _Robert G. Wilson v_, Sep 04 2004 *)
%Y The indices of the p are in A098171.
%K nonn
%O 1,1
%A _Pierre CAMI_, Aug 30 2004
%E Edited and extended by _Robert G. Wilson v_, Sep 04 2004