login
A098152
a(n) = a(n-1)^2 + n, with a(0)=0.
6
0, 1, 3, 12, 148, 21909, 480004287, 230404115538378376, 53086056457022411804685755744397384, 2818129390158170901506703075470572449397357853477615482257305306043465
OFFSET
0,3
LINKS
Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, Zbigniew Gołębiewski, On the number of unary-binary tree-like structures with restrictions on the unary height, arXiv:1510.01167 [math.CO], 2015, see Table 1, p. 19.
FORMULA
For n>0, a(n) = floor(1.366609561487624975914833969579996...^(2^n)) = floor(A028300(n)^0.68178667449368682115305109818...) = ceiling(A003095(n)^1.53346965582393874689368175542252...).
EXAMPLE
a(4) = a(3)^2 + 4 =12^2 + 4 = 148.
MATHEMATICA
a=0; lst={}; Do[a=a^2+n; AppendTo[lst, a], {n, 0, 11}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *)
RecurrenceTable[{a[0]==0, a[n]==a[n-1]^2+n}, a, {n, 10}] (* Harvey P. Dale, Jul 28 2012 *)
PROG
(Magma) [0] cat [n eq 1 select 1 else Self(n-1)^2+n: n in [1..10]]; // Vincenzo Librandi, Oct 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Oct 25 2004
STATUS
approved