login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci sequence with a(1) = 7 and a(2) = 26.
0

%I #16 Aug 17 2017 03:00:04

%S 7,26,33,59,92,151,243,394,637,1031,1668,2699,4367,7066,11433,18499,

%T 29932,48431,78363,126794,205157,331951,537108,869059,1406167,2275226,

%U 3681393,5956619,9638012,15594631,25232643,40827274,66059917,106887191,172947108

%N Fibonacci sequence with a(1) = 7 and a(2) = 26.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1).

%F a(n) = a(n-1) + a(n-2).

%F G.f.: (7x + 19x^2)/(1 - x - x^2). - _Emeric Deutsch_, Apr 16 2005

%e a(3) = a(2) + a(1) = 26 + 7 = 33.

%p a[1]:=7:a[2]:=26: for n from 3 to 37 do a[n]:=a[n-1]+a[n-2] od: seq(a[n],n=1..37); # _Emeric Deutsch_, Apr 16 2005

%t LinearRecurrence[{1, 1}, {7, 26}, 80] (* _Vladimir Joseph Stephan Orlovsky_, Feb 17 2012 *)

%Y Cf. A022136, A097657.

%K nonn

%O 1,1

%A _Parthasarathy Nambi_, Sep 26 2004

%E More terms from _Emeric Deutsch_, Apr 16 2005