login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098004
Fractional Pisot 4 X 4 Markov sequence Bezier {1/4,1/2,1/4} of golden mean, theta0 and theta1.
0
4, 9, 13, 23, 5, 9, 15, 24, 5, 8, 13, 21, 1, 2, 4, 6, 12, 20, 32, 53, 13, 23, 37, 60, 12, 21, 33, 54, 3, 6, 9, 15, 29, 49, 79, 129, 33, 57, 91, 149, 30, 50, 80, 130, 8, 14, 22, 37, 72, 124, 196, 321, 82, 138, 221, 360, 72, 123, 196, 319, 20, 34, 55, 89, 178, 298, 476, 774, 201
OFFSET
0,1
MATHEMATICA
digits=Floor[21*3/4];
a=Sqrt[2]*2/3^(1/4);
M=N[a*({{0, 1, 0, 0}, {1, 1, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}/4+{{0, 1, 0, 0}, {0, 0, 1, 0}, {1, 1, 0, 0}, {0, 0, 0, 0}}/2+{{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 1}}/4)];
Det[M]
A[n_]:=M.A[n-1]; A[0]:={{0, 1, 1, 2}, {1, 1, 2, 3}, {1, 2, 3, 5}, {2, 3, 5, 8}};
b=Flatten[Table[M.A[n], {n, 1, digits}]]
Floor[Abs[b]]
Dimensions[b][[1]]
ListPlot[b, PlotJoined->True]
CROSSREFS
Sequence in context: A022130 A042125 A041905 * A257337 A056227 A048261
KEYWORD
nonn,uned,obsc
AUTHOR
Roger L. Bagula, Sep 08 2004
STATUS
approved