login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d dividing n} tau(d)^3 = (Sum_{d dividing n} tau(d))^2.
5

%I #66 Aug 29 2024 23:33:58

%S 1,9,9,36,9,81,9,100,36,81,9,324,9,81,81,225,9,324,9,324,81,81,9,900,

%T 36,81,100,324,9,729,9,441,81,81,81,1296,9,81,81,900,9,729,9,324,324,

%U 81,9,2025,36,324,81,324,9,900,81,900,81,81,9,2916,9,81,324

%N a(n) = Sum_{d dividing n} tau(d)^3 = (Sum_{d dividing n} tau(d))^2.

%C When n = p^e is a prime power, we have the corollary a(n) = Sum_{r=1..e+1} r^3 = (Sum_{r=1..e+1} r)^2, i.e. A000537(n) = (A000217(n))^2.

%C 3^A001221(n) always divides a(n) except if n > 1 and included in A000578. - _Enrique Pérez Herrero_, Jul 12 2010

%D Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 47.

%D Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 562, pp. 75, 265; Ellipses Paris 2004.

%D William J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 85, Problem 2.

%D William J. LeVeque, Fundamentals of Number Theory, Dover Publications Inc, 1977, p. 125.

%D Joe Roberts, The Lure of Integers, MAA, 1992, Integer 3, pages 8-9.

%D J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 84.

%H Seiichi Manyama, <a href="/A097988/b097988.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Enrique Pérez Herrero)

%F a(n) = (Sum_{d dividing n} tau(d))^2 = (A007425(n))^2.

%F Multiplicative with a(p^e) = ((e+1)*(e+2)/2)^2. - _Amiram Eldar_, Sep 20 2020

%F Dirichlet g.f.: zeta(s)^5 * Product_{p prime} (1 + 4/p^s + 1/p^(2*s)). - _Amiram Eldar_, Sep 14 2023

%p with(numtheory); f:=proc(n) local t1; t1:=divisors(n); add(sigma[0](i), i in t1)^2; end;

%t tau[1,n_Integer] := 1; SetAttributes[tau, Listable]; tau[k_Integer,n_Integer] := Plus@@(tau[k-1,Divisors[n]]); A097988[n_] := tau[3,n]^2; Table[A097988[n], {n, 100}] (* _Enrique Pérez Herrero_, Jul 12 2010 *)

%t f[n_]:=Total[DivisorSigma[0,Divisors[n]]]^2;f/@Range[100] (* _Ivan N. Ianakiev_, Mar 05 2015 *)

%t a[n_] := DivisorSum[n, DivisorSigma[0, #]&]^2; Array[a, 100] (* _Jean-François Alcover_, Dec 02 2015 *)

%t f[p_, e_] := ((e+1)*(e+2)/2)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 20 2020 *)

%o (PARI) a(n)=sumdiv(n,d,numdiv(d))^2 \\ _Charles R Greathouse IV_, Jan 22 2013

%o (PARI) a(n)=sumdiv(n, d, numdiv(d)^3); \\ _Michel Marcus_, Nov 21 2013

%Y Cf. A000005, A000217, A000537, A007425.

%K nonn,mult,easy

%O 1,2

%A _Lekraj Beedassy_, Sep 07 2004

%E More terms from _Carl Najafi_, Oct 19 2011

%E Entry revised by _N. J. A. Sloane_, May 22 2012