login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of the central trinomial coefficients (A002426).
6

%I #68 May 27 2024 22:42:24

%S 1,2,5,12,31,82,223,616,1723,4862,13815,39468,113257,326198,942425,

%T 2730032,7926659,23061590,67214399,196211252,573590621,1678941350,

%U 4920076877,14433305000,42381641381,124558477682,366371703833

%N Partial sums of the central trinomial coefficients (A002426).

%C a(n) is the number of peaks at odd height in all Motzkin paths of length n+2. Example: a(2)=5 counts the peaks shown between parentheses in the 9 Motzkin paths of length 4: HHHH, HH(UD), H(UD)H, HUHD, (UD)HH, (UD)(UD), UHDH, UHHD and UUDD.

%C Binomial transform of 1,1,2,2,6,6,20,20,70,70...... (A000984 doubled). It would appear that the Hankel transform of this sequence is a signed version of A128055, with sign pattern given by s(n)=(2/3-sqrt(3)/3)cos(5*Pi*n/6)-sin(5*Pi*n/6)/3+(sqrt(3)/3+2/3)*cos(Pi*n/6)-sin(Pi*n/6)/3-cos(Pi*n/2)/3+sin(Pi*n/2)/3. - _Paul Barry_, Jan 03 2008

%C The subsequence of primes in this sequence of partial sums begins: 2, 5, 31, 223, 1723, no more through a(26). - _Jonathan Vos Post_, May 12 2010

%C Designate a triangle to have T(n,1) = T(n,n) = 1 and T(r,c) = T(r,c-1) + T(r-1,c-1) + T(r-2,c-1). The sum of the terms in row(n) = a(n+1). - _J. M. Bergot_, Apr 30 2013

%H Reinhard Zumkeller, <a href="/A097893/b097893.txt">Table of n, a(n) for n = 0..1000</a>

%H Moa Apagodu and Doron Zeilberger, <a href="http://arxiv.org/abs/1606.03351">Using the "Freshman's Dream" to Prove Combinatorial Congruences</a>, arXiv:1606.03351 [math.CO], 2016. Also Amer. Math. Monthly. 124 (2017), 597-608.

%H Paul Barry, <a href="http://dx.doi.org/10.1016/j.laa.2015.10.032">Riordan arrays, generalized Narayana triangles, and series reversion</a>, Linear Algebra and its Applications, 491 (2016) 343-385.

%H Karl Dilcher and Larry Ericksen, <a href="https://arxiv.org/abs/2405.12024">Polynomials and algebraic curves related to certain binary and b-ary overpartitions</a>, arXiv:2405.12024 [math.CO], 2024. See p. 14.

%H László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Nemeth/nemeth6.html">The trinomial transform triangle</a>, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also <a href="https://arxiv.org/abs/1807.07109">arXiv:1807.07109</a> [math.NT], 2018.

%F G.f.: 1/((1-z)*sqrt(1-2*z-3*z^2)).

%F a(n) = Sum_{0<=j<=i<=n} C(i, i-j)*C(j, i-j). - _Benoit Cloitre_, Oct 23 2004

%F a(n) = sum_{k=0..n} Sum_{j=0..n-k} C(k,j)C(n-k,j)C(2j,j). - _Paul Barry_, Jan 03 2008

%F Logarithm g.f. atan(x*M(x)), M(x) - o.g.f. for Motzkin numbers (A001006). - Vladimir Kruchinin_, Aug 11 2010

%F Conjecture: -n*a(n) +(3*n-1)*a(n-1) +(n-2)*a(n-2) +3*(1-n)*a(n-3)=0. - _R. J. Mathar_, Nov 09 2012 [Since A002426(n) = a(n) - a(n-1), this third-order recurrence follows easily from the second-order recurrence given in A002426. - _Peter Bala_, Oct 28 2015]

%F G.f.: G(0)/(1-x), where G(k)= 1 + x*(2+3*x)*(4*k+1)/( 4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jun 29 2013

%F a(n) ~ 3^(n+3/2)/(4*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 23 2013

%F a(n) = Sum_{k = 0..floor(n/2)} binomial(n + 1,2*k + 1) *binomial(2*k,k). Cf. A025178. - _Peter Bala_, Oct 28 2015

%F a(n) = (n+1)*hypergeom([1/2,(1-n)/2,-n/2],[1,3/2],4). - _Peter Luschny_, Oct 29 2015

%p ser:=series(1/(1-z)/sqrt(1-2*z-3*z^2),z=0,32): 1,seq(coeff(ser,z^n),n=1..31);

%p a := n -> (n+1)*hypergeom([1/2,(1-n)/2,-n/2],[1,3/2],4):

%p seq(simplify(a(n)), n=0..26); # _Peter Luschny_, Oct 29 2015

%t Table[ Sum[ Binomial[n, k]*Binomial[k, n-k], {k, 0, n}], {n, 0, 26}] // Accumulate (* _Jean-François Alcover_, Jul 10 2013 *)

%t CoefficientList[Series[1/((1-x)*Sqrt[1-2*x-3*x^2]), {x, 0, 50}], x] (* _G. C. Greubel_, Dec 21 2017 *)

%o (PARI) a(n)=sum(i=0,n,sum(j=0,i,binomial(i,i-j)*binomial(j,i-j)))

%o (Haskell)

%o a097893 n = a097893_list !! n

%o a097893_list = scanl1 (+) a002426_list

%o -- _Reinhard Zumkeller_, Jan 22 2013

%o (PARI) vector(30, n, n--; sum(k=0, n\2, binomial(n+1, 2*k+1)* binomial(2*k, k))) \\ _Altug Alkan_, Oct 29 2015

%o (PARI) x='x+O('x^30); Vec(1/((1-x)*sqrt(1-2*x-3*x^2))) \\ _G. C. Greubel_, Dec 21 2017

%Y Cf. A002426, A025178.

%K nonn,easy

%O 0,2

%A _Emeric Deutsch_, Sep 03 2004