login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are products of (at least two) consecutive primes.
14

%I #44 Aug 30 2024 02:55:27

%S 6,15,30,35,77,105,143,210,221,323,385,437,667,899,1001,1147,1155,

%T 1517,1763,2021,2310,2431,2491,3127,3599,4087,4199,4757,5005,5183,

%U 5767,6557,7387,7429,8633,9797,10403,11021,11663,12317,12673,14351,15015,16637,17017

%N Numbers that are products of (at least two) consecutive primes.

%C Subsequence of A073485; A073490(a(n)) = 0. - _Reinhard Zumkeller_, Nov 20 2004

%C A proper subset of A073485. - _Robert G. Wilson v_, Jun 11 2010

%C A192280(a(n)) * (1 - A010051(a(n))) = 1. - _Reinhard Zumkeller_, Aug 26 2011 [corrected by _Jason Yuen_, Aug 29 2024]

%C The Heinz numbers of the partitions into at least 2 consecutive parts. The Heinz number of an integer partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). Examples: (i) 105 (=3*5*7) is in the sequence because it is the Heinz number of the partition [2,3,4]; (ii) 108 (= 2*2*3*3*3) is not in the sequence because it is the Heinz number of the partition [1,1,2,2,2]. - _Emeric Deutsch_, Oct 02 2015

%H Reinhard Zumkeller, <a href="/A097889/b097889.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) ~ n^2 log^2 n. - _Charles R Greathouse IV_, Oct 24 2012

%e 1001 = 7 * 11 * 13.

%p isA097889 := proc(n)

%p local plist,p,i ;

%p plist := sort(convert(numtheory[factorset](n),list)) ;

%p if nops(plist) < 2 then

%p return false;

%p end if;

%p for i from 1 to nops(plist) do

%p p := op(i,plist) ;

%p if modp(n,p^2) = 0 then

%p return false;

%p end if;

%p if i > 1 then

%p if nextprime(op(i-1,plist)) <> p then

%p return false;

%p end if;

%p end if;

%p end do:

%p true;

%p end proc:

%p for n from 1 to 1000 do

%p if isA097889(n) then

%p printf("%d,",n);

%p end if;

%p end do: # _R. J. Mathar_, Jan 12 2016

%t a = {}; Do[ AppendTo[a, Apply[ Times, (Prime /@ Partition[ Range[30], n, i]), 1]], {n, 2, 6}, {i, n - 1}]; Take[ Union[ Flatten[ a]], 45] (* _Robert G. Wilson v_, Sep 24 2004 *)

%o (Haskell)

%o import Data.Set (singleton, deleteFindMin, insert)

%o a097889 n = a097889_list !! (n-1)

%o a097889_list = f $ singleton (6, 2, 3) where

%o f s = y : f (insert (w, p, q') $ insert (w `div` p, a151800 p, q') s')

%o where w = y * q'; q' = a151800 q

%o ((y, p, q), s') = deleteFindMin s

%o -- _Reinhard Zumkeller_, May 12 2015, Aug 26 2011

%o (PARI) list(lim)=my(v=List(), p, t); for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1, e-1, prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim, next(2)); listput(v, t); p=nextprime(p+1))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Oct 24 2012

%o (Python)

%o import heapq

%o from sympy import sieve

%o sieve.extend(10**6)

%o primes = list(sieve._list)

%o def prime(n): return primes[n-1]

%o def aupton(terms, verbose=False):

%o p = prime(1)*prime(2); h = [(p, 1, 2)]; nextcount = 3; alst = []

%o while len(alst) < terms:

%o (v, s, l) = heapq.heappop(h)

%o alst.append(v)

%o if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} prime(i)]")

%o if v >= p:

%o p *= prime(nextcount)

%o heapq.heappush(h, (p, 1, nextcount))

%o nextcount += 1

%o v //= prime(s); s += 1; l += 1; v *= prime(l)

%o heapq.heappush(h, (v, s, l))

%o return alst

%o print(aupton(45)) # _Michael S. Branicky_, Jun 15 2021

%Y Union of A006094, A046301, A046302, A046303, A046324, A046325, A046326, A046327, etc.

%Y Cf. A050936.

%Y Intersection of A073485 and A002808.

%Y Cf. A151800, A215366.

%K nonn,easy

%O 1,1

%A Bart la Bastide (bart(AT)xs4all.nl), Sep 21 2004

%E More terms from _Robert G. Wilson v_, Sep 24 2004

%E Data corrected for n > 41 by _Reinhard Zumkeller_, Aug 26 2011