%I #16 Jul 02 2023 18:49:26
%S 1,14,182,2353,30408,392952,5077969,65620646,847990430,10958254945,
%T 141609323856,1829962955184,23647909093537,305592855260798,
%U 3949059209296838,51032176865598097,659469240043478424
%N Partial sums of Chebyshev sequence S(n,13)= U(n,13/2)=A078362(n).
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (14, -14, 1).
%F a(n) = sum(S(k, 13), k=0..n) with S(k, 13)=U(k, 13/2)=A078362(k) Chebyshev's polynomials of the second kind.
%F G.f.: 1/((1-x)*(1-13*x+x^2)) = 1/(1-14*x+14*x^2-x^3).
%F a(n) = 14*a(n-1)-14*a(n-2)+a(n-3) with n>=2, a(-1)=0, a(0)=1, a(1)=14.
%F a(n) = 13*a(n-1)-a(n-2)+1 with n>=1, a(-1)=0, a(0)=1.
%F a(n) = (S(n+1, 13) - S(n, 13) -1)/11.
%Y Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Aug 31 2004