login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n containing k U H^j Us for some j>0, where U=(1,1) and H=(1,0) (can be easily expressed using RNA secondary structure terminology).
3

%I #6 Mar 30 2012 17:35:59

%S 1,1,1,2,4,8,16,1,32,5,65,17,134,50,1,280,136,7,592,355,31,1264,904,

%T 114,1,2722,2264,378,9,5906,5604,1176,49,12900,13752,3504,215,1,28344,

%U 33530,10112,835,11,62608,81358,28468,2997,71,138949,196688,78576,10173,361,1

%N Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n containing k U H^j Us for some j>0, where U=(1,1) and H=(1,0) (can be easily expressed using RNA secondary structure terminology).

%C Row n contains floor(n/3) entries (n>=3).

%C Row sums are the RNA secondary structure numbers (A004148).

%C T(n,0)=A098051(n).

%C Sum(k*T(n,k), k>=0)=A187257(n).

%D I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.

%D P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26, 1979, 261-272.

%D M. Vauchassade de Chaumont and G. Viennot, Polynomes orthogonaux et problemes d'enumeration en biologie moleculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.

%H M. Vauchassade de Chaumont and G. Viennot, <a href="http://www.mat.univie.ac.at/~slc/opapers/s08viennot.html">Polynomes orthogonaux at problemes d'enumeration en biologie moleculaire</a>, Sem. Loth. Comb. B08l (1984) 79-86.

%F G.f. = G = G(t, z) satisfies G=1+zG+z^2*G[G-1-(1-t)[zG-z/(1-z)]].

%F The generating function H=H(t,z) relative to the number of subwords of the form UH^bU for a fixed b>=1 satisfies H = 1+zH+z^2*H[H-1+(t-1)z^b*(H-1-zH)].

%e Triangle starts:

%e 1;

%e 1;

%e 1;

%e 2;

%e 4;

%e 8;

%e 16,1;

%e 32,5;

%e 65,17;

%e 134,50,1;

%e 280,136,7;

%e Row n has floor(n/3) terms, n>=3.

%e T(7,1)=5 because we have H(UHU)HDD, (UHU)HHDD, (UHU)HDHD, (UHU)HDDH and (UHHU)HDD, where U=(1,1), H=(1,0) and D=(1,-1); the U H^j U's are shown between parentheses.

%p eq := G = 1+z*G+z^2*G*(G-1+(t-1)*(z*G-z/(1-z))): g := RootOf(eq, G): gser := simplify(series(g, z = 0, 23)): for n from 0 to 18 do P[n] := sort(coeff(gser, z, n)) end do: 1; 1; 1; for n from 3 to 18 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)-1) end do; # yields sequence in triangular form

%Y Cf. A004148, A098051, A187257

%K nonn,tabf

%O 0,4

%A _Emeric Deutsch_, Sep 11 2004