Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:45:14
%S 1,4,16,64,280,1600,12160,102400,880000,8358400,94720000,1189888000,
%T 15213952000,204285952000,3092697088000,51351519232000,
%U 869951500288000,15148619579392000,287722152460288000,5927812334878720000
%N E.g.f.: (1/(1-x^4))*exp( 4*Sum_{i>=0} x^(4*i+1)/(4*i+1) ) for an order-4 linear recurrence with varying coefficients.
%C Lim_{n->inf} n*n!/a(n) = 4*c = 0.4157591527... where c = 4*exp(psi(1/4)+EulerGamma) = 0.1039397881...(A097665) and EulerGamma is the Euler-Mascheroni constant (A001620) and psi() is the Digamma function (see Mathworld link).
%D Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
%D A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.
%H Benoit Cloitre, <a href="/A097679/a097679.pdf">On a generalization of Euler-Gauss formula for the Gamma function</a>, preprint 2004.
%H Andrew Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf">Asymptotic enumeration methods</a>, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a>.
%F For n>=4: a(n) = 4*a(n-1) + n!/(n-4)!*a(n-4); for n<4: a(n)=4^n.
%F E.g.f.: (1+x)/(1-x^4)/(1-x)*exp(2*atan(x)).
%e The sequence {1, 4, 16/2!, 64/3!, 280/4!, 1600/5!, 12160/6!, 102400/7!,...} is generated by a recursion described by _Benoit Cloitre_'s generalized Euler-Gauss formula for the Gamma function (see Cloitre link).
%t Range[0, 20]! CoefficientList[ Series[ E^(4Sum[x^(4k + 1)/(4k + 1), {k, 0, 150}])/(1 - x^4), {x, 0, 20}], x] (* _Robert G. Wilson v_, Sep 03 2004 *)
%o The following PARI code generates this sequence and demonstrates the general recursion with the asymptotic limit and e.g.f.:
%o /* Define Cloitre's recursion: */
%o z=[1,0,0,0]; r=4; s=4; zt=sum(i=1,r,z[i])
%o {w(n)=if(n<r,0,if(n==r,1,w(n-s)+s/(n-r)*sum(i=1,r,z[i]*w(n-i))))}
%o /* The following tends to a limit (slowly): */
%o for(n=r,20,print(if(w(n)==0,0,n^zt/w(n))*1.0,","))
%o /* This is the exact value of the limit: */
%o {s^(zt+1)*gamma(zt+1)*exp(sum(k=1,r,z[k]*(psi(k/s)+Euler)))}
%o /* Print terms w(n) multiplied by (n-r)! for e.g.f. */
%o for(n=r,20,print1((n-r)!*w(n),","))
%o /* Compare to terms generated by e.g.f.: */
%o {EGF(x)=1/(1-x^s)*exp(s*sum(i=0,30,sum(j=1,r,z[j]*x^(s*i+j)/(s*i+j))))}
%o for(n=0,20-r,print1(n!*polcoeff(EGF(x)+x*O(x^n),n),","))
%o /* -----------------------END---------------------- */
%o (PARI) {a(n)=n!*polcoeff(1/(1-x^4)*exp(4*sum(i=0,n,x^(4*i+1)/(4*i+1)))+x*O(x^n),n)}
%o (PARI) a(n)=if(n<0,0,if(n==0,1,4*a(n-1)+if(n<4,0,n!/(n-4)!*a(n-4))))
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)/(1-x^4)/(1-x)*Exp(2*Arctan(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Aug 29 2018
%Y Cf. A097665, A097677, A097678, A097680, A097681, A097682.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Sep 01 2004