login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the constant 5*exp(psi(3/5)+EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.
3

%I #19 Feb 27 2021 13:20:38

%S 1,9,0,7,9,5,9,5,3,2,5,4,3,5,4,2,5,2,2,5,5,3,3,3,8,1,3,9,7,2,9,5,2,0,

%T 3,6,9,0,8,5,1,6,0,6,8,3,5,9,0,8,2,9,6,8,2,2,8,2,2,3,5,9,6,0,8,1,0,7,

%U 0,6,3,7,8,6,8,8,6,5,5,0,4,0,3,9,9,7,2,3,6,3,5,8,3,0,9,0,1,3,8,0,7,5,3,9,0

%N Decimal expansion of the constant 5*exp(psi(3/5)+EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

%C This constant appears in _Benoit Cloitre_'s generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

%D A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

%H G. C. Greubel, <a href="/A097669/b097669.txt">Table of n, a(n) for n = 1..2500</a>

%H Benoit Cloitre, <a href="/A097679/a097679.pdf">On a generalization of Euler-Gauss formula for the Gamma function</a>, preprint 2004.

%H Xavier Gourdon and Pascal Sebah, <a href="http://numbers.computation.free.fr/Constants/Miscellaneous/gammaFunction.html">Introduction to the Gamma Function</a>.

%H Andrew Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/doc/asymptotic.enum.pdf">Asymptotic enumeration methods</a>, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.

%F c = ((sqrt(5)+1)/2)^(sqrt(5)/2)/5^(1/4)*exp(Pi/2*sqrt(1-2/sqrt(5))).

%e c = 1.90795953254354252255333813972952036908516068359082968228223...

%t RealDigits[ GoldenRatio^(Sqrt[5]/2)/5^(1/4)*E^(Pi/2Sqrt[1 - 2/Sqrt[5]]), 10, 105][[1]] (* _Robert G. Wilson v_, Aug 27 2004 *)

%o (PARI) 5*exp(psi(3/5)+Euler)

%Y Cf. A097663-A097668, A097670-A097676.

%K cons,nonn

%O 1,2

%A _Paul D. Hanna_, Aug 25 2004

%E More terms from _Robert G. Wilson v_, Aug 27 2004