%I #12 Oct 08 2020 03:36:27
%S 23456789,21443183,21442591,19351159,31126343,24541211,18181117,
%T 31136533,81711361,28441117,11352151,53311211,23831321,38123257,
%U 26641313,88617157,71517241,11262533,91911691,21442381,13174321
%N 8-digit primes formed by concatenating the first decimal digits of {2^n, ..., 9^n} with the n's given by A097616.
%C The sequence contains exactly 1127 distinct primes as proved by Eising et al., 2015.
%H Rick L. Shepherd, <a href="/A097617/b097617.txt">Table of n, a(n) for n = 1..10000</a>
%H J. Eising, D. Radcliffe, and J. Top. <a href="http://www.jstor.org/discover/10.4169/amer.math.monthly.122.03.234">A Simple Answer to Gelfand’s Question</a>. American Mathematical Monthly 122:3 (2015), 234-245.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GelfandsQuestion.html">Gelfand's Question</a>
%Y Cf. A097616.
%K nonn,base
%O 1,1
%A _Eric W. Weisstein_, Aug 16 2004