login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A 2 X 2 matrix version of A005185: Hofstadter's sequence.
0

%I #6 Oct 25 2014 14:06:42

%S 0,1,1,1,1,1,1,2,2,2,2,4,3,3,3,6,3,3,3,6,4,4,4,8,5,5,5,10,5,5,5,10,6,

%T 6,6,12,6,6,6,12,6,6,6,12,8,8,8,16,8,8,8,16,8,8,8,16,10,10,10,20,9,9,

%U 9,18,10,10,10,20,11,11,11,22,11,11,11,22,12,12,12,24,12,12,12,24,12,12,12

%N A 2 X 2 matrix version of A005185: Hofstadter's sequence.

%F A[n_]:=A[n]=A[n-A[n-1][[1, 1]]]+A[n-A[n-2][[1, 2]]]; A[0]:={{0, 1}, {1, 1}}; A[1]:={{1, 1}, {1, 2}};

%t Clear[A, M] (* Hofstadter 2 X 2 Matrix sequence*) (* by Roger L. Bagula *) digits=100 A[n_]:=A[n]=A[n-A[n-1][[1, 1]]]+A[n-A[n-2][[1, 2]]]; A[0]:={{0, 1}, {1, 1}}; A[1]:={{1, 1}, {1, 2}}; (* flattened sequence of 2 X 2 matrices made with a Hofstadter recurrence*) b=Flatten[Table[A[n], {n, 0, digits}]] ListPlot[b, PlotJoined->True]

%Y Cf. A005185.

%K nonn

%O 0,8

%A _Roger L. Bagula_, Aug 28 2004