login
A097537
-Sum_{k=1..2*q-1} J(k,q)*J(-4,k)*k/4 as q runs through primes == 3 (mod 4), where J(i,j) is the Jacobi symbol.
1
1, 4, 7, 19, 20, 40, 63, 56, 85, 123, 116, 168, 129, 228, 197, 320, 279, 381, 444, 467, 364, 471, 520, 660, 737, 720, 575, 712, 753, 764, 1032, 1021, 1145, 1036, 1461, 1155, 1308, 1528, 1781, 1288, 1619, 1704, 2132, 1707, 2248, 1765, 1920, 2404, 2119, 2705, 1924
OFFSET
1,2
REFERENCES
H. Petersson, Modulfunktionen und Quadratische Formen, Springer-Verlag, 1982; p. 103.
CROSSREFS
Cf. A097536.
Sequence in context: A267488 A230601 A132207 * A032723 A231374 A173017
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 27 2004
STATUS
approved