login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097512 a(n) = 6*Lucas(2n) - Fibonacci(2n+2). 1
11, 15, 34, 87, 227, 594, 1555, 4071, 10658, 27903, 73051, 191250, 500699, 1310847, 3431842, 8984679, 23522195, 61581906, 161223523, 422088663, 1105042466, 2893038735, 7574073739, 19829182482, 51913473707, 135911238639 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sequence relates bisections of Lucas and Fibonacci numbers.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (3,-1).

FORMULA

a(n) = 8*Lucas(2n) - Lucas(2n+2) - 2*Fibonacci(2n-1) = 8*A005248(n) - A005248(n+1) - 2*A001519(n).

a(n+1)/a(n) approaches the golden ratio phi + 1 = (3+sqrt(5))/2.

From Philippe Deléham, Nov 16 2008: (Start)

a(n) = 3*a(n-1) - a(n-2) with a(0)=11 and a(1)=15.

G.f.: (11-18*x)/(1-3*x+x^2). (End)

a(n) = (11/2)*( ((3+sqrt(5))/2)^n + ((3-sqrt(5))/2)^n ) - (3*sqrt(5)/10)*( ((3+sqrt(5))/2)^n + ((3-sqrt(5)/2)^n ), with n>=0. - Paolo P. Lava, Nov 19 2008

a(n) = 4*Fibonacci(2n+1) + 7*Fibonacci(2n-1) = 4*Lucas(2n) + 3*Fibonacci(2n-1). - Ron Knott, Jul 01 2013

E.g.f.: exp(3*x/2)*( 11*cosh(sqrt(5)*x/2) - (3/sqrt(5))*sinh(sqrt(5)*x/2) ). - G. C. Greubel, Jan 19 2020

MAPLE

f:=fibonacci; f[combinat]; seq(4*f(2*n+1)+7*f(2*n-1), n=0..30); # G. C. Greubel, Jan 19 2020

MATHEMATICA

Table[6LucasL[2n]-Fibonacci[2n+2], {n, 0, 30}] (* or *) LinearRecurrence[ {3, -1}, {11, 15}, 30] (* Harvey P. Dale, Oct 02 2011 *)

PROG

(MAGMA) [8*Lucas(2*n) - Lucas(2*n+2) - 2*Fibonacci(2*n-1): n in [0..30]]; // Vincenzo Librandi, Oct 03 2011

(PARI) vector(31, n, 4*fibonacci(2*n-1) +7*fibonacci(2*n-3) ) \\ G. C. Greubel, Jan 19 2020

(Sage) [6*lucas_number2(2*n, 1, -1) - fibonacci(2*n+2) for n in (0..30)] # G. C. Greubel, Jan 19 2020

(GAP) List([0..30], n-> 6*Lucas(1, -1, 2*n)[2] - Fibonacci(2*n+2) ); # G. C. Greubel, Jan 19 2020

CROSSREFS

Cf. A000032, A000045, A005248, A022133.

Sequence in context: A030099 A085597 A316643 * A032490 A068483 A241679

Adjacent sequences:  A097509 A097510 A097511 * A097513 A097514 A097515

KEYWORD

nonn,easy

AUTHOR

Creighton Dement, Aug 26 2004

EXTENSIONS

New definition from Ralf Stephan, Dec 01 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 22:01 EDT 2020. Contains 335537 sequences. (Running on oeis4.)