|
|
A097512
|
|
a(n) = 6*Lucas(2n) - Fibonacci(2n+2).
|
|
1
|
|
|
11, 15, 34, 87, 227, 594, 1555, 4071, 10658, 27903, 73051, 191250, 500699, 1310847, 3431842, 8984679, 23522195, 61581906, 161223523, 422088663, 1105042466, 2893038735, 7574073739, 19829182482, 51913473707, 135911238639
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Sequence relates bisections of Lucas and Fibonacci numbers.
|
|
LINKS
|
|
|
FORMULA
|
a(n+1)/a(n) approaches the golden ratio phi + 1 = (3+sqrt(5))/2.
a(n) = 3*a(n-1) - a(n-2) with a(0)=11 and a(1)=15.
G.f.: (11-18*x)/(1-3*x+x^2). (End)
a(n) = 4*Fibonacci(2n+1) + 7*Fibonacci(2n-1) = 4*Lucas(2n) + 3*Fibonacci(2n-1). - Ron Knott, Jul 01 2013
E.g.f.: exp(3*x/2)*( 11*cosh(sqrt(5)*x/2) - (3/sqrt(5))*sinh(sqrt(5)*x/2) ). - G. C. Greubel, Jan 19 2020
|
|
MAPLE
|
f:=fibonacci; f[combinat]; seq(4*f(2*n+1)+7*f(2*n-1), n=0..30); # G. C. Greubel, Jan 19 2020
|
|
MATHEMATICA
|
Table[6LucasL[2n]-Fibonacci[2n+2], {n, 0, 30}] (* or *) LinearRecurrence[ {3, -1}, {11, 15}, 30] (* Harvey P. Dale, Oct 02 2011 *)
|
|
PROG
|
(Magma) [8*Lucas(2*n) - Lucas(2*n+2) - 2*Fibonacci(2*n-1): n in [0..30]]; // Vincenzo Librandi, Oct 03 2011
(PARI) vector(31, n, 4*fibonacci(2*n-1) +7*fibonacci(2*n-3) ) \\ G. C. Greubel, Jan 19 2020
(Sage) [6*lucas_number2(2*n, 1, -1) - fibonacci(2*n+2) for n in (0..30)] # G. C. Greubel, Jan 19 2020
(GAP) List([0..30], n-> 6*Lucas(1, -1, 2*n)[2] - Fibonacci(2*n+2) ); # G. C. Greubel, Jan 19 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|