login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097495
Subsequence of terms of even index in the Somos-5 sequence.
2
1, 1, 1, 3, 11, 83, 1217, 22833, 1249441, 68570323, 11548470571, 2279343327171, 979023970244321, 771025645214210753, 816154448855663209121, 2437052403320731070558403, 7362326966302540624120605547
OFFSET
0,4
COMMENTS
The sequence corresponds to the sequence of points Q+nP on the curve y^2 = 4*x^3 - (121/12)*x + 845/216, where Q=(-19/12,2) and P=(17/12,-1).
For every 5th-order bilinear recurrence of Somos-5 type, b(n+3)*b(n-2) = alpha*b(n+2)*b(n-1) + beta*b(n+1)*b(n) (alpha, beta constant), both the subsequence of even index a(n)=b(2n) and that of odd index a(n)=b(2n+1) satisfy the same 4th-order Somos-4 type recurrence a(n+2)*a(n-2) = gamma*a(n+1)*a(n-1) + delta*a(n)^2, where the constant coefficients gamma, delta can be given in terms of alpha, beta and the initial data b(0), b(1), b(2), b(3), b(4).
a(n+2) is the Hankel transform of A174171. - Paul Barry, Mar 10 2010
This is a generalized Somos-4 sequence. - Michael Somos, May 12 2022
LINKS
Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
A. N. W. Hone, Elliptic curves and quadratic recurrence sequences, Bull. Lond. Math. Soc. 37 (2005) 161-171.
FORMULA
a(n) = (a(n-1)*a(n-3) + 8*a(n-2)^2)/a(n-4).
Exact formula: a(n) = A*B^n*sigma(c+n*k)/sigma(k)^(n^2) where sigma is the Weierstrass sigma function associated to the elliptic curve y^2 = 4*x^3 - (121/12)*x + 845/216,
A = 1/sigma(c) = 0.142427718 - 1.037985022*i,
B = sigma(k)*sigma(c)/sigma(c+k)
= 0.341936209 + 0.389300717*i,
c = Integral_{infinity..-19/12} dx/y
= 0.163392410 + 0.973928783*i,
k = Integral_{17/12..infinity} dx/y
= 1.018573545,
all to 9 decimal places.
a(n) = a(2-n) = (-8*a(n-1)*a(n-4) + 57*a(n-2)*a(n-3))/a(n-5) for all n in Z. - Michael Somos, May 12 2022
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==a[2]==1, a[3]==3, a[n]==(a[n-1]a[n-3]+ 8a[n-2]^2)/a[n-4]}, a, {n, 20}] (* Harvey P. Dale, Sep 14 2013 *)
a[ n_] := a[n] = Which[n<1, a[2-n], n<4, {1, 1, 3}[[n]], True, (a[n-1]*a[n-3] + 8*a[n-2]^2)/a[n-4]]; (* Michael Somos, May 12 2022 *)
PROG
(PARI) {a(n) = if(n<1, a(2-n), n<4, [1, 1, 3][n], (a(n-1)*a(n-3) + 8*a(n-2)^2)/a(n-4))}; /* Michael Somos, May 12 2022 */
CROSSREFS
Sequence in context: A342058 A062580 A335968 * A228034 A157980 A092148
KEYWORD
nonn
AUTHOR
Andrew Hone, Aug 24 2004
STATUS
approved