login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A relationship between Pi and the Mandelbrot set. a(n) = number of iterations of z^2 + c that c-values -0.75 + x*i go through before escaping, where x = 10^(-n). Lim_{n->inf} a(n) * x = Pi.
4

%I #33 Sep 08 2022 08:45:14

%S 3,33,315,3143,31417,314160,3141593,31415927,314159266,3141592655,

%T 31415926537,314159265359,3141592653591

%N A relationship between Pi and the Mandelbrot set. a(n) = number of iterations of z^2 + c that c-values -0.75 + x*i go through before escaping, where x = 10^(-n). Lim_{n->inf} a(n) * x = Pi.

%C -0.75 + 0*i is the neck of the Mandelbrot set.

%C a(n) is an approximation to Pi*10^n. If you substitute "1/K" in place of "0.1" in the algorithm, the resulting sequence will approximate Pi*K^n. If expressed in base K, the sequence terms will then have digits similar to the digits of Pi in base K.

%C Calculation of this sequence is subject to roundoff errors. In PARI/GP and in C++ using a quad-precision library, the value of A(7) is 31415927, not 31415928 as was originally recorded in this entry. - _Robert Munafo_, Jan 07 2010

%C In the PARI/GP program below, if you change "z=0" to "z=c" and "2.0" to "4.0", you get a similar sequence and in addition, A(-1)=0, which is "more aesthetically correct" given the notion that this sequence approximates Pi*10^n. However, such a modified program is NOT equivalent for positive N, it gives A097486(8)=314159267. - _Robert Munafo_, Jan 25 2010

%C Terms through a(9) verified in MAGMA by _Jason Kimberley_, and in Mathematica by _Hans Havermann_.

%C The difference between the terms of a(n) and A011545(n) = floor(Pi*10^n) is d(n) = 0, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, ... - _Martin Renner_, Feb 24 2018

%D Peitgen, Juergens and Saupe: Chaos and Fractals (Springer-Verlag 1992) pages 859-862.

%D Peitgen, Juergens and Saupe: Fractals for the Classroom (Springer-Verlag 1992) Part two, pages 431-434.

%H Dave Boll, <a href="https://home.comcast.net/~davejanelle/mandel.html">Pi and the Mandelbrot set</a>

%H Boris Gourevitch, <a href="http://www.pi314.net/mandelbrot.php">Pi et les fractales, Ensemble de Mandelbrot - Dave Boll - Gerald Edgar</a>

%H Hans Havermann, <a href="http://chesswanks.com/blahg/odo/Blog/Entries/2010/2/3_Computing_p_in_seahorse_valley.html">Computing pi in seahorse valley</a> [From Hans Havermann, Feb 12 2010]

%H Aaron Klebanoff, <a href="https://home.comcast.net/~davejanelle/mandel.pdf">Pi in the Mandelbrot set</a> (proof)

%H Robert Munafo, <a href="http://www.mrob.com/pub/muency/seahorsevalley.html#computepi">Seahorse Valley</a> [From Robert Munafo, Jan 25 2010]

%p Digits:=2^8:

%p f:=proc(z, c, k) option remember;

%p f(z, c, k-1)^2+c;

%p end;

%p a:=proc(n)

%p local epsilon, c, k;

%p epsilon:=10.^(-n):

%p c:=-0.75+epsilon*I:

%p f(0, c, 0):=0:

%p for k do

%p if abs(f(0, c, k))>2 then

%p break;

%p fi;

%p od:

%p return(k);

%p end;

%p seq(a(n), n=0..7); # _Martin Renner_, Feb 24 2018

%t $MinPrecision = 128; Do[c = SetPrecision[.1^n * I - .75, 128]; z = 0; a = 0; While[Abs[z] < 2, z = z^2 + c; a++ ]; Print[a], {n, 0, 8}] (* _Hans Havermann_, Oct 20 2010 *)

%o (Magma) A097486:=function(n) c:=10^-n*Sqrt(-1)-3/4; z:=0; a:=0; while Modulus(z)lt 2 do z:=z^2+c; a+:=1; end while; return a; end function; // _Jason Kimberley_

%o (PARI) A097486(n)=local(a,c,z);c=0.1^n*I-0.75;z=0;a=0;while(abs(z)<2.0,{z=z^2+c;a=a+1});a \\ _Robert Munafo_, Jan 25 2010

%Y Cf. A011545, A299415, A300078.

%K nonn,more

%O 0,1

%A _Gerald McGarvey_, Sep 19 2004

%E Links corrected by _Gerald McGarvey_, Dec 16 2009

%E Corrected and extended by _Robert Munafo_, Jan 25 2010

%E Name corrected by _Martin Renner_, Feb 24 2018