OFFSET
1,4
COMMENTS
LINKS
Wolfdieter Lang, First 18 rows.
FORMULA
T(n, m) = number of partitions of n with odd parts only and largest parts <= 2*m-1 for m from {1, 2, ..., ceiling(n/2)}.
T(n, m) = Sum_{k=1..m} A097305(n, k), m = 1..ceiling(n/2), n >= 1.
EXAMPLE
[1]; [1]; [1,2]; [1,2]; [1,2,3]; [1,3,4]; [1,3,4,5]; [1,3,5,6]; ...
T(8,2)=3 because there are three partitions of 8 with odd parts not exceeding 3, namely (1^8), (1^5,3) and (1^2,3^2).
T(6,2)=3 from the partitions (1^6), (1^3,3) and (3^2).
MAPLE
Sequence of row numbers for n>=1: [seq(coeff(series(product(1/(1-x^(2*k-1)), k=1..p), x, n+1), x, n), p=1..ceil(n/2))].
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Wolfdieter Lang, Aug 13 2004
STATUS
approved