login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097296
Numbers k such that A001055(k) divides k.
4
1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 26, 27, 28, 29, 30, 31, 34, 36, 37, 38, 41, 43, 44, 46, 47, 48, 52, 53, 56, 58, 59, 61, 62, 67, 68, 70, 71, 73, 74, 76, 79, 82, 83, 86, 89, 92, 94, 97, 101, 103, 105, 106, 107, 109, 110, 113, 116, 118, 122, 124, 127, 130
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Florian Luca, Anirban Mukhopadhyay and Kotyada Srinivas, On the Oppenheim's "factorisatio numerorum" function, arXiv:0807.0986 [math.NT], 2008.
FORMULA
Luca et al. estimate the density of this sequence (see their Theorem 3).
The number of terms that do not exceed x is ~ x/(log(x))^(1+o(1)) (Luca et al., 2008). - Amiram Eldar, May 23 2024
MAPLE
g:= proc(n, k) option remember; `if`(n>k, 0, 1)+
`if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d)),
d=numtheory[divisors](n) minus {1, n}))
end:
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, a(n-1))
while irem(k, g(k$2))>0 do od; k
end:
seq(a(n), n=1..100); # Alois P. Heinz, May 16 2014
MATHEMATICA
g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] // Most // Rest}]]; a[1] = 1; a[n_] := (For[k = 1 + If[n == 1, 0, a[n-1]], Mod[k, g[k, k]] > 0 , k++]; k); Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 07 2014, after Alois P. Heinz *)
CROSSREFS
Cf. A001055.
Sequence in context: A279455 A050687 A098908 * A131616 A175857 A173919
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 12 2009
STATUS
approved