login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = binomial(n,k) + 2*binomial(n,k-1).
5

%I #18 Jul 26 2015 10:14:10

%S 1,1,3,1,4,5,1,5,9,7,1,6,14,16,9,1,7,20,30,25,11,1,8,27,50,55,36,13,1,

%T 9,35,77,105,91,49,15,1,10,44,112,182,196,140,64,17,1,11,54,156,294,

%U 378,336,204,81,19,1,12,65,210,450,672,714,540,285,100,21,1,13,77,275,660

%N Triangle read by rows: T(n,k) = binomial(n,k) + 2*binomial(n,k-1).

%H Reinhard Zumkeller, <a href="/A097207/b097207.txt">Rows n=0..150 of triangle, flattened</a>

%H H. W. Gould, <a href="http://dx.doi.org/10.1137/0117030">Power sum identities for arbitrary symmetric arrays</a>, SIAM J. Appl. Math., 17 (1969), 307-316.

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F T(n,k) = A029635(n+1,k), 0 <= k <= n. - _Reinhard Zumkeller_, Mar 12 2012

%e Triangle begins:

%e 1

%e 1 3

%e 1 4 5

%e 1 5 9 7

%e 1 6 14 16 9

%t T[n_, k_] := Binomial[n, k] + 2Binomial[n, k - 1]; Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* _Robert G. Wilson v_, Sep 21 2004 *)

%o (Haskell)

%o a097207 n k = a097207_tabl !! n !! k

%o a097207_row n = a097207_tabl !! n

%o a097207_tabl = map init $ tail a029635_tabl

%o -- _Reinhard Zumkeller_, Mar 12 2012

%Y Cf. A029637, A110813 (row-reversed).

%K nonn,tabl,easy

%O 0,3

%A _N. J. A. Sloane_, Sep 21 2004

%E More terms from _Robert G. Wilson v_, Sep 21 2004