login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponents of 2 that form the denominators of coefficients in function A(x) such that A(A(x)) = x+x^2.
2

%I #4 Mar 30 2012 18:36:41

%S 0,0,1,2,2,4,6,4,8,7,11,12,13,13,14,15,18,18,20,22,23,24,26,26,25,26,

%T 30,31,33,32,34,33,38,38,39,39,42,44,46,46,46,48,51,52,53,53,55,55,56,

%U 55,59,61,62,63,65,66,68,68,70,71,73

%N Exponents of 2 that form the denominators of coefficients in function A(x) such that A(A(x)) = x+x^2.

%C A097088 lists the reduced numerators.

%F G.f.: A(x) = Sum_{n>=0} A097088(n)/2^a(n) where A(A(x)) = x + x^2.

%o (PARI) {a(n)=local(A,B,F=x+x^2+x*O(x^n));A=F; if(n==0,0, for(i=0,n,B=serreverse(A);A=(A+subst(B,x,F))/2); valuation(denominator(polcoeff(A,n,x)),2))}

%Y Cf. A097088.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Jul 23 2004