Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Dec 15 2023 19:18:18
%S 1,0,1,0,2,1,5,5,14,19,42,66,131,221,417,728,1341,2380,4334,7753,
%T 14041,25213,45542,81927,147798,266110,479779,864201,1557649,2806272,
%U 5057369,9112264,16420730,29587889,53317085,96072133,173118414,311945595,562110290
%N Number of walks of length n on P_3 plus a loop at the end.
%C Counts closed walks of length n at the start of P_3 to which a loop has been added at the other extremity. a(n+1) counts walks between the first node and the last. Let A be the adjacency matrix of the graph P_3 with a loop added at the end. A is a 'reverse Jordan matrix' [0,0,1;0,1,1;1,1,0]. a(n) is obtained by taking the (1,1) element of A^n.
%C Sequence is also related to matrices associated with rhombus substitution tilings showing 7-fold rotational symmetry. Let A_{7,1} be the 3 X 3 unit-primitive matrix (see [Jeffery]) A_{7,1}=[0,1,0; 1,0,1; 0,1,1]; then a(n)=[A_{7,1}^n]_(1,1). - _L. Edson Jeffery_, Jan 05 2012
%C a(n+2) is the (1,1) element of the n-th power of each of the two 3 X 3 matrices: [0,1,1; 1,0,0; 1,0,1], [0,1,1; 1,1,0; 1,0,0]. - _Christopher Hunt Gribble_, Apr 03 2014
%H Michael De Vlieger, <a href="/A096976/b096976.txt">Table of n, a(n) for n = 0..3914</a>
%H Robin Chapman and Nicholas C. Singer, <a href="http://www.jstor.org/stable/4145281">Eigenvalues of a bidiagonal matrix</a>, Amer. Math. Monthly, 111 (2004) 441.
%H Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, <a href="https://arxiv.org/abs/2210.12411">On a variant of Flory model</a>, arXiv:2210.12411 [math.CO], 2022.
%H L. E. Jeffery, <a href="/wiki/User:L._Edson_Jeffery/Unit-Primitive_Matrices">Unit-primitive matrices</a>
%H Kai Wang, <a href="https://www.researchgate.net/publication/337943524_Fibonacci_Numbers_And_Trigonometric_Functions_Outline">Fibonacci Numbers And Trigonometric Functions Outline</a>, (2019).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1).
%F G.f. : (1-x-x^2)/(1-x-2x^2+x^3); a(n)=a(n-1)+2a(n-2)-a(n-3).
%F a(n) = 5a(n-2)-6a(n-4)+a(n-6). - _Floor van Lamoen_, Nov 02 2005
%F a(n) = A077998(-n) for all n in Z. - _Michael Somos_, Dec 12 2023
%e G.f. = 1 + x^2 + 2*x^4 + x^5 + 5*x^6 + 5*x^7 + 14*x^8 + 19*x^9 + ... - _Michael Somos_, Dec 12 2023
%t LinearRecurrence[{1, 2, -1}, {1, 0, 1}, 60] (* _Vladimir Joseph Stephan Orlovsky_, Feb 13 2012 *)
%t a[ n_] := {1, 0, 0} . MatrixPower[{{1, 2, -1}, {1, 0, 0}, {0, 1, 0}}, n] . {1, 1, 3}; (* _Michael Somos_, Dec 12 2023 *)
%o (PARI) {a(n) = [1, 0, 0] * [1, 2, -1; 1, 0, 0; 0, 1, 0]^n * [1, 1, 3]~}; /* _Michael Somos_, Dec 12 2023 */
%Y Cf. A006053, A052547, A077998.
%K easy,nonn
%O 0,5
%A _Paul Barry_, Jul 16 2004