login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n for which there are exactly ten k such that n = k + (product of nonzero digits of k).
13

%I #7 Jun 12 2019 14:22:36

%S 1011098,2102125,2411305,2711105,4012055,4042055,4086725,4101455,

%T 4105555,4132755,4310145,6021254,6621256,8012765,8013495,8111255,

%U 8202555,9012405,9302165,10011116,10111014,10113255,11011098,12102125

%N Numbers n for which there are exactly ten k such that n = k + (product of nonzero digits of k).

%e 965738, 978842, 988058, 991658, 1009397, 1010874, 1010936, 1010972, 1011058 and 1011082 are the only ten k such that k + (product of nonzero digits of k) = 1011098, hence 1011098 is a term.

%t f[n_] := Block[{s = Sort[ IntegerDigits[n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {12500000}]; Do[ a = f[n]; If[a < 12500000, t[[a]]++ ], {n, 12500000}]; Do[ If[ t[[n]] == 10, Print[n]], {n, 12500000}] (* _Robert G. Wilson v_, Jul 16 2004 *)

%o (PARI) {c=10;z=3000000;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922

%Y Cf. A063114, A096347, A096922, A096923, A096924, A096925, A096926, A096927, A096928, A096929, A096930.

%K nonn,base

%O 1,1

%A _Klaus Brockhaus_, Jul 15 2004

%E More terms from _Robert G. Wilson v_, Jul 16 2004