|
|
A096926
|
|
Numbers n for which there are exactly five k such that n = k + (product of nonzero digits of k).
|
|
9
|
|
|
1098, 1126, 1180, 1272, 1474, 1546, 1564, 2014, 2125, 2418, 3180, 3230, 3442, 5222, 5358, 5640, 6245, 7185, 7666, 8155, 8173, 8412, 9214, 9229, 9450, 9518, 10074, 10102, 10110, 10134, 10212, 10228, 10355, 10445, 10455, 10474, 10546, 10827
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..38.
|
|
EXAMPLE
|
937, 982, 1077, 1118 and 1122 are the only five k such that k + (product of nonzero digits of k) = 1126, hence 1126 is a term.
|
|
PROG
|
(PARI) {c=5; z=11000; v=vector(z); for(n=1, z+1, k=addpnd(n); if(k<=z, v[k]=v[k]+1)); for(j=1, length(v), if(v[j]==c, print1(j, ", ")))} \\for function addpnd see A096922
|
|
CROSSREFS
|
Cf. A063114, A096347, A096922 - A096925, A096927 - A096931.
Sequence in context: A160370 A123366 A186476 * A249287 A252418 A261911
Adjacent sequences: A096923 A096924 A096925 * A096927 A096928 A096929
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Klaus Brockhaus, Jul 15 2004
|
|
STATUS
|
approved
|
|
|
|