Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 03 2024 02:03:51
%S 5,7,11,7,13,17,7,11,19,13,23,11,11,17,29,13,31,19,13,37,23,11,17,41,
%T 17,43,19,13,47,19,13,29,31,53,23,23,59,17,61,37,17,11,19,67,29,41,19,
%U 71,13,43,31,29,73,17,13,31,47,79,23,19,83,23,37,53,89,37,17,41,97,59
%N Greatest prime factor of n-th product of 3 distinct primes.
%H Amiram Eldar, <a href="/A096919/b096919.txt">Table of n, a(n) for n = 1..10000</a>
%F A096917(n)*A096918(n)*a(n) = A007304(n).
%F A096917(n) < A096918(n) < a(n).
%F a(n) = A006530(A007304(n)).
%t f[n_]:=Last/@FactorInteger[n]=={1,1,1};f1[n_]:=Min[First/@FactorInteger[n]];f2[n_]:=Max[First/@FactorInteger[n]];lst={};Do[If[f[n],AppendTo[lst,f2[n]]],{n,0,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Apr 10 2010 *)
%o (Python)
%o from math import isqrt
%o from sympy import primepi, primerange, integer_nthroot, primefactors
%o def A096919(n):
%o def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1)))
%o def bisection(f,kmin=0,kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o return max(primefactors(bisection(f))) # _Chai Wah Wu_, Aug 30 2024
%Y Cf. A006530, A007304, A096917, A096918.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Jul 15 2004