login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 101^n.
7

%I #40 Aug 29 2024 05:57:41

%S 1,101,10201,1030301,104060401,10510100501,1061520150601,

%T 107213535210701,10828567056280801,1093685272684360901,

%U 110462212541120451001,11156683466653165551101,1126825030131969720661201,113809328043328941786781301,11494742132376223120464911401,1160968955369998535166956051501

%N a(n) = 101^n.

%C A185817(n) = smallest m such that in decimal representation n is a prefix of a(m).

%C a(n) gives the n-th row of Pascals' triangle (A007318) as long as all the binomial coefficients have at most two digits, otherwise the binomial coefficients with more than two digits overlap. - _Daniel Forgues_, Aug 12 2012

%C From _Peter M. Chema_, Apr 10 2016: (Start)

%C One percent growth applied n times increases a value by factor of a(n)/10^(2n), since 1% increases using "1.01". Therefore (a(n)/10^(2n) - 1)*100 = the percentage increase of one percent growth applied n times.

%C For instance, 432 increasing by 1% three times gives 445.090032 (i.e., 432*1.01^3), which is 1.030301 (a(3)/10^(2*3)) times 432 or a 3.0301% increase from the original 432 ((a(3)/10^(2*3)-1)*100 = 3.0301). (End)

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (101).

%F a(n) = Sum_{k=0..n} binomial(n, k)*10^(n-k).

%F a(n) = A096883(2n).

%F a(n) = 101^n. a(n) = Sum_{k=0..n,} binomial(n, k)*100^k. - _Paul Barry_, Aug 24 2004

%F G.f.: 1/(1-101*x). - _Philippe Deléham_, Nov 25 2008

%F E.g.f.: exp(101*x). - _Ilya Gutkovskiy_, Apr 10 2016

%t Table[101^n, {n, 0, 11}] \\ _Ilya Gutkovskiy_, Apr 10 2016

%o (PARI) a(n)=101^n \\ _Charles R Greathouse IV_, Oct 16 2015

%o (PARI) x='x+O('x^99); Vec(1/(1-101*x)) \\ _Altug Alkan_, Apr 10 2016

%Y Cf. A007318, A003590, A001020, A097659.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Jul 14 2004