|
|
A096873
|
|
Minimum diameter of an integral set of n points in the plane, no 3 on a line, no 4 on a circle.
|
|
2
|
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
An integral set is a set where all distances between points are integers.
As of 2011, it is not known if this sequence is finite or even if a(8) exists.
|
|
REFERENCES
|
H. Harborth, Integral distances in point sets, Butzer, P. L. (ed.) et al., Karl der Grosse und sein Nachwirken. 1200 Jahre Kultur und Wissenschaft in Europa. Band 2: Mathematisches Wissen. Turnhout: Brepols. 213-224 (1998).
|
|
LINKS
|
Table of n, a(n) for n=1..7.
Tobias Kreisel, Sascha Kurz, There are integral heptagons, no three points on a line, no four on a circle, preprint (2006)
T. Kreisel and S. Kurz, There are integral heptagons, no three points on a line, no four on a circle, Discrete and Computational Geometry 39 Issue 4 (2008), 786-790, MR2413160
J. Solymosi and F. de Zeeuw, On a Question of Erdos and Ulam, Discrete and Computational Geometry Vol. 43 Issue 2 (2010), 393-401.
|
|
CROSSREFS
|
Cf. A007285, A096872.
Sequence in context: A001799 A205505 A058068 * A282786 A241630 A153482
Adjacent sequences: A096870 A096871 A096872 * A096874 A096875 A096876
|
|
KEYWORD
|
hard,nonn,more
|
|
AUTHOR
|
Sascha Kurz, Jul 13 2004
|
|
EXTENSIONS
|
a(7) computed in [Kreisel-Kurz].
|
|
STATUS
|
approved
|
|
|
|